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A BASIC computer program for performing weighted nonlinear regression is described
and a listing of the program is given. The program, which is small and simple to use, has been
designed to be run by users with little of ics o Robust
methods of analysis are described which may be applied to data in which experimental errors
are not normally distributed, and the program incorporates one such method. It is shown
that the program is useful for the analysis of data conforming to the Michaelis-Menten

The quantitative analysis of experimental
data frequently requircs comparison with
some sort of mathematical equation or
model. All too often this analysis involves
a transformation of the data which are then
plotted and a straight line is drawn through
them. The slope and intercept may then be
transformed or combined in various ways to
obtain the parameters of the original
equation. For example Eq. [1] describes a

§ =y m
first-order decay curve,' and the classical
method of analysis is to plot

In (y) against ¢. From the slope (S) and the
intercept (/) the parameters are obtained
using k = —S and y, = ¢’. A much better
method for the analysis of first-order decay
curves is to fit Eq. [1] directly to the data
| by nonlinear regression. Although this type
of analysis is relatively straightforward,
nonlinear regression has made very liftle
i impact in biochemistry with the notable ex-
{ ception of enzyme-kinctic studies.

i A great many packaged computer pro-

1 Throughout the paper a distinction will be drawn
between y, the observed value of the dependent
variable; ¥, a value calculated for a particular set of
parameter values; and § the true, but usually un-
known, value.

equation, a single exponential, and to binding equations, and other applications are di

ussed.

grams are available for performing non-
linear regression analysis but these are,
without excepti long and histi d
programs designed to be run on large com-
puters. In this paper, a simple BASIC non-
linear regression program is presented
which can be run on mini- or even micro-
computers. Some of the underlying theory
is presented but a understanding of this
theory is not a prerequisite for using the
program. The program has been deliberately
limited to the situation in which the equation
to be fitted has two parameters, as such
equations occur quite commonly.

THEORY

Transforming experimental data into a
form which may be plotted as a straight line
is a useful method of displaying the data but
it is not a reliable method for its analy
Experimental errors can be grossly ma
nified as is the case with the Lincweave:
Burk plot of enzyme~Kkinetic data and fitting

- of a straight line to the transformed data

will not, in general, yield the ““best’ values
for the parameters. This is true, regardless
of whether the fit is performed by eye’ or
by linear least-squares analysis. Careful
weighting of the transformed data may com-
pensate for the distortion in certain in-
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10 R. G. DUGGLEBY

stances but in others, such as a Scatchard
plot in which the observed variable appears
on both axes, distortion is unavoidable. If
transformation of the data is to be eliminated
it is necessary to fit the mathematical
equation to the data directly. The form of
the equation is not usually a matter of
choice, but rather it depends on some under-
lying theoretical model. Generally, these
theoretical considerations lead to an equa-
tion which is nonlinear in the parameters
and the fitting procedure will involve non-
linear regression. °

On the whole, biochemists regard non-
linear regression with a mixture of awe and
suspicion, as something which is beyond
their capacity to comprehend. In fact it is
quite simple, requiring little more than a
knowledge of elementary algebra and inThis
section the basic principles are set out.
Later, a simple and flexible computer
program, which dies these pri

be calculated using

a, = (5555 — S255)/A

. ay = (5185 = $a54)/A
where
A =553 — 53

To calculate the standard errors of a; and
a,, we calculate the sum of squares of
residuals (s¢) and the residual standard error
(ry) using

se= T wly — 9

o= [sd(N = 2)1"
The standard errors of @, and a, are given by

SE(ay) = r(sy )"

SE(ay) = rys/A)"*
The values of a, and a, calculated above
are “‘best-fit’” values in the sense that they
minimize the weighted sum of squares, sg.

will be described.

Classical Methods

regre . The fund 1
ideas underlying the Gauss—Newton method
of nonlinear regression have been described
by Wilkinson (1). These ideas are best
understood against a background of the
principles of linear regression which will be
described briefly. Consider the case where
we wish to fit Eq. [2] to a set of N observa-
tions, where a, and a, are parameters to

Nonli

¥ =ax; +ax: 21

be estimated and x, and x, are independent vari-
ables. (This is not intended to imply that x, and
x are necessarily independent of one another;
for example, x, may equal x2). To estimate
a, and a, we first form the sums .

Sp= S owalsa= 3 wxai S = 2 wx;
S4= 2 WX1Yi8s = 3 wxay,

where w is a nonnegative ‘‘weight” at-
tached to each observation, and whichis dis-
cussed in detail below. The parameters may

‘This is rily so because the formulae
for a, and a, are found by differentiating
s with respect to a, and a,, setting these
derivatives equal to zero and solving the
resultant simultaneous equations.

For nonlinear equations, a similar pro-
cedure does not lead to a simple solution
and we cannot calculate the best-fit values
for the parameters in a single step. ‘What can
be done in a single step is to take some
estimates of these values and correct them
to give better estimates.

Suppose we are trying to fit a nonlinear
equation in which there is a single
parameter, b:

§ =fb)
An estimate, b, will differ from the best-fit
value, b, by an unknown amount g:
b=b+ q. .
From the Taylor series we may write
5 =f6+a)
q*

=) + af ') + zrf"(!;)

@ .
+ ;f (5)¢+ e
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where f', f", and so on denote successive
differentiation with respect tob. If we ignore
all the terms in g* and beyond, represent
f(b) as 3, and replace the unknown 3 with
the experimental y, we can rearrange to get
y =3 =af'(b).
In other words, an approximate value for
¢ can be found by linear regression in which
the difference between the experimental and
the calculated value of y is treated as the
dependent variable while the derivative f'(b)
is treated as the independent variable. The
value for g so derived will not be exactly
correct due to the approximation in ignoring
high-order terms of the Taylor series. How-

ever, the newly calculated value of b may

be refined by applying this correction pro-
cedure repeatedly, a process known as
“‘jteration.”

This concept may be generalized to cases

in which there are more than a single-

parameter. Consider the arbitrary function
described by Eq. [3], where b, and b, are

§=flby b2 X), 3]

nonlinear parameters and X represents the
values of one or more independent variables. If.
the initial estimates of the parameters are b®
and b,®, we may calculate corrections
(g, and g») to these parameters by fitting,
the equation

z=q+ qp2
in which z is the residual (y — ¥) while p,
and p, are the partial derivatives, 85/8b, and
87/8b,. The coefficients, g, and g, are esti-
mated as described above for the linear case
and are used to correct the values of the
nonlinear parameters

bV = b +q,

by® = by® + qa.

These new estimates of the parameters may
then be refined in further iterations. When
g, and g, are negligible (‘“‘convergence’),
the standard ervors of b, and b, are equal
to those of ¢, and ga, respectively (1), and

NONLINEAR REGRESSION PROGRAM 11

are calculated as described earlier.

Partial derivatives. We saw above that
in nonlinear regression the calculation of the
corrections (q) requires values of the partial
derivatives (p) which are treated as in-
dependent variables. Ideally, these deriva-
tives should be obtained by analytical dif-
ferentiation of the nonlinear function (Eq.
(3]), which may involve some tedious
algebra. In practice, the derivatives can be
calculated to the required precision by
numerical differentiation which avoids the
algebra. The function (Eq. [3]) is evaluated
after the parameter b, is perturbed by an
amount d;:

§' =f(by + dy, by; X)

and a first-order approximation of p; is
given by
pi=(Q" = yVd:.

A more accurate value may be found using
a second-order approximation if the func-
tion is evaluated at a second point:

3" =f(by = dy, by; X)
pr=0" -3

A value for p, is found by applying this
same procedure to b,. In the computes pro-
gram to be described later, d, and d, are
chosen to be 2% of b, and b, respectively.

Weighting. 1t may happen that we have
advance knowledge that some observations
are more accurate than others and this in-
formation should be incorporated in the
analysis. This is achieved by weighting each
observation by an amount (w) which is
inversely proportional to its variance, s0
that fitting involves minimizing the weighted
sum of squares, s¢. This same weight must
also be applicd in forming the sums s,-5;
which are used to calculate regression co-
efficients. Frequently, these a priori weights
are calculated from some simple weighting
function. For example, the standard devia-
tion of y may be approximately propor-
tional to y in which case w = 1/y* will be
used as the weighting function. One of the
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methods of robust regression described be-
low is based on weighting.

Robust Methods

Robust regression. The classical method
for fitting a function to experimental data
involves minimizing the sum of squares of
residuals. Since each residual (z) is squared
in the summation and as the worst ob-
servations will have the largest residuals,
the fit tends to be dominated by these ob-
servations. A drastic solution to this dif-
ficulty is to discard the worst observations
but to do this it is necessary to introduce
an essentially arbitrary division between
acceptable and unacceptable observations.
A gentler procedure is to use a ‘“‘robust’
method in which the residuals are modified
so that less emphasis is placed on the
larger ones.

Wahrendorf (2) has described a robust
method which he has applied to the analysis
of Scatchard plot data. Briefly, the residual
sum of squares is replaced with the func-
tion ¥ p(z):

if | ] <c
2c[ l -c? if ]z] =c,

where ¢ is a ‘“‘robustness constant.”” The
value of p(z) increases as the square of z
when z is numerically less than ¢, but
thereafter increases as the absolute value of
z. There is a smooth transition at z = c. If
¢ is chosen to be very large, this method is
indistinguishable from the normal least-
squares method.

p@) =

A somewhat different method has been-

described by Mosteller and Tukey (3) in
which each squared residual is multiplied by
a ‘‘bisquare weight,” b,,:

(1 - u?? lul =1

by, =
0 it |u|>1,

where u =z/c and ¢ is the robustness
constant. If z > ¢, that particular observa-
tion is *‘weighted-out™ of the analysis (i.e.,
ignored), while moderate-sized residuals
acquire a fractional weight. Observations

which agree well with the fitted function

have a small residual and are given close
to a full weight of 1.0. As with a priori~
weights, the bisquare weight is applied in
calculating the sums s,-s; from which the
regression coefficients are calculated.

If ¢ is chosen to be very large, b, will
equal 1.0 for all observations and we have
the usual least-squares method. Usually we
will want to choose a value of ¢ which is
farge enough that |u\ <1 for the great
majority of observations. In the computer
program to be described later, a value equal
to six times the mean absolute residual
> |z [/N ) has been utilized but Mosteller
and Tukey have pointed out that many other
values will also work well. Bisquare weight-
ing can be used in conjunction with a priori
weights in which case the final weight ap-
plied will be the product of b,. and w. In the
calculation of b, and ¢ for this latter case,
we must use the weighted residual zw!? in
place of z alone.

Median methods. If experimental data
were free of error, values for the two
parameters of Eq. [3] could be obtained by
measurmg y at two pomls and solving the

yus equations.
In practice, of course, data do contain some
variability and more than two measurements
are made. The purpose of the additional
measurements is to increase the reliability
of the parameter estimates and, more im-
portantly, to permit the calculation of a
measure of this reliability. Cornish-Bowden
and Eisenthal (4) have suggested a robust
method of analysis for the case where
Eq. [3] represents the Michaelis—Menten
equation, and this may be adapted to any
two-parameter, nonlinear equation. Values
for the parameters are calculated from each
possible pair of measurements and these
N(N — 1)/2 values for b, and b, are used to
determine the best estimates of the values.
It was originally proposed (4) that the
median values of b, and b, should be taken
as the best estimates but it was subsequently
pointed out (5) that the median values for
b, and b, may be biased. It is usually
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possible to find' combinations of b, and b,
which are median—unbiased and the pre-
ferred procedure is as follows. For each pair
of measurements, b, and b, are calculated
and these are transformed to the median—
unbiased combinations, ¢, and c,. These
latter-values are separately ranked in order
of their magnitude and the centrally ranked
values are located. Finally, the best esti-
mates of b, and b, are calculated from the
median values of ¢; and ¢ by reversing the
transformation. The type of transformation
involved is usually quite simple and an ex-
ample will serve to illustrate this point.
The median values of by = V and b, = K
of the Michaelis—Menten equation are biased
whereas ¢; = 1/V and ¢ = K/V are me-
dian—unbiased. The reverse transformations
which are used to calculate V and K from
the median values of ¢, and ¢, are equally
simple: V = ey and K = cicy.

Confidence intervals for by and b, may be
found by an extension of this median method
(6). Kendall's S* statistic is calculated to
find the ranks which enclose the confidence
interval at any desired probability level, and
the values of ¢, and ¢a which occupy these
ranks are determined. Limits on the param-
eters are found by transforming ¢, and ¢z
to b, and by.

An alternative median method has been
described by Duggleby (7,8) which is based
on a special experimental design. Multiple
determinations of y are made under two sets
of experimental conditions and the median
of each set of replicates is taken as an
estimate of §. Values for b, and by, which
are calculated by solving the resulting two
simultaneous equations, will be the best
estimates of these parameters. This method
has the advantage that it avoids the necessity
of transforming into median—unbiased com-
binations of the parameters. Other advan-
tages have been described previously (7,8).

All median methods require the algebraic
solution of a set of nonlinear equations.
The solutions will depend on the form of the
equations and for this reason it is dif-
ficult (but by no means impossible) to in-
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corporate a median method into a general
computer program. Thus, in the program
described below, robustness has been
approached by the bisquare weighting
method. For the sake of completeness,
the solutions required for median methods
are also given for the specific models
considered below. These solutions may be
useful for calculating initial estimates

of the parameters.
.

RESULTS

A computer program embodying the non-
linear regression principles outlined under
the Theory section has been written in
BASIC. The program was developed using
BASIC-11, a version of this language which
is used in the PDP-11 series of computers.
Exploitation of special features of this
version of the language was deliberately
avoided to facilitate transfer of the program
to other computers which will support the
BASIC language.

A listing of the program is shown in Fig. 1
and while it might appear that the program
is quite long, this impression is largely
illusory. Of the 176 lines in the program,
68_are REM statements which contribute
nothing to the operation of the program but
serve solely to document it. Of the remaining
108 lings, 26 print either blank lines or
headings. Thus, the heart of the program
is less than one-half of the total and com-
pression of the source code may be achieved
readily, an important consideration for
microcomputers where storage limitations
are critical.

The only statement which depends on the
equation to be fitted is line 2650 which,
in Fig. 1, describes the Michaelis—Menten
equation. Other models may be fitted by
replacing this line with the appropriate
expression. For example, the first-order
decay curve described by Eq. [1] might
be written:

2650 G = B(1)*exp(-B(2)*X)-

Partial derivatives are calculated by nu-
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Fic. 1. BASIC computer program for weighted nonlinear regression analysis. In general, the
variable names used in the program correspond to those used in the Theory section. The major excep- *
tions are quantities used in calculating bisquare weights (here named R1-RS) and j (here named G).
The only library functions used are the square root function (SQR) and the absolute value function
(ABS). The circumflex () which appears in several places (¢.g., line 1580) indicated exponentiation.
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be ‘desirable. In rare instances when a
parameter value happens to fall close to

a not unexpected finding since the model is
exactly linear in V. The derivative for K
is hat less a -ate but in no case

zero, the perturbation used to calcul the
derivative may be too small. There is no
universal remedy to this situation but the
program user should be aware of it. Ob-
viously, a value of zero should never be
used as an initial estimate of a parameter.
A number of weighting options are available
including equal weighting, 1/y weighti gand

1/y* weighting and others may be easily .

included. Alternatively, the standard devia-
tion of y (or a factor proportional to it) can
be specified explicitly. Each of these weight-
ing options is available both withand without
bisquare weighting. Iteration is continued
until the sum of the absolute values of the
relative changes in the parameter values
(i.e., 3 |g/b]) is less than 10~ at which time
the program is considered to have con-
verged. If convergence is not reached in 10
iterations, a warning is issued and the current
values of the parameters are printed.

The program has been tested witha variety
of models and three of these will be de-
scribed. These do not represent the limit of
flexibility of the program. For each model,
the equations necessary for the median
methods described under the Theory section
are given as well as the median—unbiased

binati of the p

Substrate saturation kinetics. Saturation
of an enzyme by its substrate frequently
obeys the familiar Michaelis— Menten equa-
tion [4] and the program shown in Fig. 1

. Vx
K +x

» 4]

will fit this equation to experimental data.
The accuracy of numerical differentiation’
was assessed using this model by compar-
ing the values of derivatives calculated
by this method with those obtained using
the analytical derivatives -y/8V = &5/V
and 85/6K = —§*/Vx. Over arange of x val-
ues from zero to 800K, the derivative for V
calculated by the numeérical method was
found to be accurate to within 0.0003%,

did the error exceed 0.05% of the value.
Such errors are of no consequence when
fitting to experimental data as is indicated
using some data for the enzyme prephenate

bvd . " dard

y (&8

deviation in y. The fit obtained using ana-
Iytical derivatives gave’ V = 18.1554
+ 0.4877 U/mg and K = 491.075 + 30.793
uM while the corresponding values using
numerical differentiation were 18.1555
+ 0.4876 U/mg and 491.078 = 30.787 uM.
For all practical purposes, the figures ob-
tained by the two methods are identical.

If median methods are used to estimate
the kinetic parameters, solutions for the
resultant simultaneous equation are

K = (y2 = y)/(yifxy = yolx2)
V = (K + x)yx,.

The di: biased inations are
1/V and K/V (5).

First-order decay . The equation for a first-
order decay curve has been given previously
(Eq- [1]) while the solutions required for
median methods are

k=(ny, ~ Iny)/(t, = 1)
Yo =y €.

Both k and y, dre median—unbiased. Nimmo
and Atkins (11) have compared various
methods for analyzing this type of data and
have observed that their computer program,
which uses a rather sophisticated nonlinear
regression method, failed to converge with
30-40 out of 500 sets of simulated data.
This simulation was repeated using data
containing normally distributed errors with
a standard deviation equal to $' (their case

2 The absurd number of decimal places given is
necessary to illustrate that analytical and numerical
derivatives do, in fact, give different results. There is
no suggestion intended that V and K are determined
to an accuracy of six significant figures.
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TABLE 1

STABILIZATION BY BISQUARE WEIGHTING OF THE FIT
To BINDING DATA WHEN AN OUTLIER IS PRESENT"

Without bisquare ‘With bisquare

weighting ‘weighting
Value ofy —
atx = 3.0 K N K Mo
2.8 1.701 1.061 0.955 0.996
2.6 1311 1.021 0.955 0.9%
2.5 1.170 1.009 0.958 0.996
2.4 1.054 1.001 0.994 0.998
23 0.957 0.996 0.963 0.998
22 0.876 0.993 0.919 0.996
2.1 0.808 0.993 0.952 0.996
2.0 0.749 0.994 0.955 0.996
1.8 0.653 1.001 0.955 0.996

“ A simulated set of data was obtained by solv-
ing Eq. (8] for § at x values of 0.5, 1.0, 1.5, 2.0,
3.0, 4.0, 5.0, 6.0, 8.0, and 10.0, assuming X = N = 1.
These theoretical data were rounded to one decimal
place and the point at x = 3.0 changed from this
simulated value of 2.3 to the value indicated. These
data were then fitted to Eq. [8] assuming constant
variance both with and without bisquare weighting to
obtain the values of X and N. Due to the errors
introduced by rounding, the fit obtained using the value
of 2.3 does not give values for K and N of exactly 1.

N2) and using weights® of 1/y? (equivalent to
their method WNL). The program described
here failed to converge within 10 iterations
for 30 of these sets of simulated data, so
while the program is no better than that used
by Nimmo and Atkins, it is no worse either.
Ten of these failures were selected for
further study and in each case sati

B = _N-F 15
K+F

bound ligand, respectively, N is the total
concentration of binding sites and K
is the dissociation constant of the ligand—
acceptor complex. This equation is similar
in form to the Michaelis—-Menten equation
but now we must take account of the fact
that there is significant depletion of free
ligand by compleéx formation. Usually, only
one of B or F will be measured while the
other is calculated from the fact that B plus
F equals the total ligand concentration (x).
Thus we may consider two different cases
depending on whether B or F is measured.
If B is the measured quantity (y), Eq. [5]
is rewritten as Eq. [6] which, upon rear-
rangement, gives Eq. [7], a quadratic which

: - . N& -9
e SV 6
’ K+x-y w6l

2K +N+x)+Ne=0 [7]

m.sy be solved for § by the usual mcthods
“Soluti for the simul
generated by median methods are

K = Oz =y =y = y2)
YiXz = YaXi
N =D& n )
=y
The medi iased combi of K

convergence could be achieved by allowmg
more than 10 iterations* or by adjusting
the initial estimates of y, and k.

Binding equations. The binding of a ligand
to a comparable concentration of an ac-
ceptor is described by Eq. [5]in which F and
B represent the concentrations of free and

3 These are not the correct weights for the error
distribution that is being simulated. These incorrect
weights are used so that the results could be com-
pared with those of Nimmo and Atkins (11).

* The iteration limit may be changed by modifying
line 1730. This has often been found to be necessary
when the bisquare weighting option s selected.

and N are 1/N and K/N.

In the situation where unbound ligand is
the measured quantity we again get a quad-
ratic (Eq. [8]). Note that this equation may

2+ 9(K+N-x)—-Kx=0 [8]
be obtained from Eq. [7] by i 15 ing K
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assessed using some simulated data for the
case where free ligand is measured and the
results obtained are shown in Table 1.
Without bisquare weighting, the fit is very
sensitive to the preseace of an outlier with
K changing by 80% from its “true” value
for a change of only 20% in the value of
1 of 10 data points. With bisquare weight-
ing introduced, the fitted value of K responds
to small deviations in the aberrant data
point but larger deviations are essentially
ignored. A similar but less pronmmcea
effect is seen for the values of N. The rela-
tive insensitivity of N to the presence of an
outlier is ascribed to the fact that the spurious
data point occurs at a moderately small x
value. Fitting (without bisquare weighting)
to a data set with an outlier at a high x value
gives rise to changes in N which are much
larger than those seen in Table 1.

DISCUSSION
The analysis of experimental data in
biochemistry, as in other quantitative
sciences, frequently requires that the data
be compared with a mathematical equation
which describes an underlying theoretical

size can impose limitations. The equation

. to be fitted to the data is specified in a single

statement so changing to other equations is
extremely easy. Partial derivatives are
calculated by a numerical method to relieve
the user of the sometimes onerous task of
deriving these functions algebraically. A
variety of weighting options are available
which should cover most commonly en-
countered situations and others can be
added easily. Finally, a bisquare weighting
option is available which detects and re-
duces the effects of observations which
deviate markedly from the fitted equation.

The output from the program consists of
best-fit values of the parameters, standard
errors of these values, and a comparison
of the experimental data with the fitted
equation. For a nonlinear equation these
standard errors are only an approximate
guide to the precision of the parameters and
should be interpreted with this in mind.
More reliable methods for estimating pre-
cision have been described (10) but these
cannot be incorporated into the present
program without a substantial increase in
complexity. The aim was not to produce a
prog which could cope with any contin-

model. In many i this is
nonlinear in the parameters and the ap-
propriate method of analysis will involve
fitting the equation to the data by non-
linear regression. The frequently used alter-
native of transforming the data into a linear
form retains its popularity because nonlinear
regression computer programs have not
been designed with a laboratory environment
in mind.

This paper presents a nonlinear regression
computer program with a number of desir-
able features. It is written in BASIC; a
language which is available on most com-
puters and which is one of the simplest
languages for the novice to understand.
Those who are proficient in FORTRAN
should be able to learn the elements of
BASIC in a few hours. The program has
been deliberately kept short to encourage
implementation and to facilitate use on mini
and mjcrocomputers for which program

gency, but rather to produce one which
would be useful in many situations, and
which is short and simple to use. Restricting
the size of the program makes it inevitable
that there will be limitations of capability
but these are not excessive. The main limita-
tion (and this is not fundamental) is that the
program will only fit equations in which there
are two parameters to be estimated and
one independent variable. Clearly there will
be some models for which the program
cannot be used without substantial modifica-
tion. The second limitation is that the program
uses the Gauss—Newton method of non-
linear regression which is known to be in-
effective when initial estimates of the pa-
rameters are not reasonably close to the best
fit values. In spite of this, the program was
found to perform as well as a much more so-
phisticated program on a test problem (11).

Results have been presented from fitting
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three equations but these do not represent
the limits of applicability. Other models
which have been successfully fitted include
the analysis of Cyf curves (12) and the three
compartment model

Further applications could include the
determination of pK's and stability con-
stants, the analysis of ultracentrifugation
data and of the effects of temperature on
enzymatic and chemical reactions. This list
is by no means exhaustive; the only limit
is the imagination of the user.
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