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p is estimated, as in the graphical method, either from the ratio of slopes or from
the horizontal distance between parallel lines.
The three forms of estimation may be summarized as follows:

(i) Standard curve: Regression equation, not necessarily linear, assumed
to remain fixed in position;
(ii) Standard slope: Regression equation on log dose assumed linear,

with constant regression coefficient;
(i) Simultaneous trial,
two doses of each

preparation: Regression on dose metameter assumed linear, but
each assay provides its own estimate of all
parameters;

(iv) Simultaneous trial,
three or more doses
of each preparation:  As (iif), but each assay also gives a test of deviations
from linearity.

The standard curve and standard slope methods will not be discussed further.

4

Parallel line assays

4.1 Unsymmetric designs

The most widely used type of simultaneous trial assay is that for which a
simple response metameter has a homoscedastic linear regression on log dose.
For such an assay, the condition of similarity requires the lines for the standard
and test preparations to be parallel (§3.7). As will become apparent in Chapters
5 and 6, symmetry in the number and spacing of doses and in the allocation of
subjects to doses usually improves precision and eases computation. Nevertheless,
an accident may convert a symmetric design into an unsymmetric, or shortage of
material may force adoption of an unsymmetric design. A general unsymmetric
assay, such as is discussed below, is also the best illustration of the whole struc-
ture of the computations.

4.2 Data for an unsymmetric assay

Table 4.2.1 (British Standards Institution, 1940) relates to an assay of vitamin
D; in cod-liver oil by means of its antirachitic activity in chickens, using percent-
age bone ash as the response. When the measured responses are percentages, both
non-linearity and heteroscedasticity of the regression are likely, at least at extreme
doses (§3.9). In this assay, almost all the responses lay between 30 percent and
45 percent, and no difficulties of statistical invalidity (§ 8§4.5, 4.6) were encoun-
tered in an analysis based on a linear regression of response on log dose. Although
no response metameter was needed, a linear transformation (commonly termed a
coding) was applied. Each bone ash percentage, u, was transformed by

y = 10(u —30), (4.2.1)

so that a response 33-5 was coded as 35, etc. Such coding can reduce the magni-
tudes of quantities used in calculations, remove decimal digits, and make most
values positive, all of which are conveniences in desk calculation though seldom
worth while on a computer. Responses recorded to halves or quarters of arbitrary
units can be coded by multiplication by 2 or 4. A linear metametric transform-
ation does not affect scedasticity, linearity, tests of validity, or potency estimates.
Table 4.2.1 contains the coded data for the vitamin Dj assay; by inversion of
equation (4.2.1), the original percentages are recoverable:

u = 30+01y. (4.2.2)

One good feature of the assay is that the doses were at equal logarithmic spac-
ing: for both preparations, the ratio of successive doses was 5/3. With a logarith-
mic dose metameter, such a choice can ensure that the dose range is adequately
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70 PARALLEL LINE ASSAYS §42
TABLE4.2.1 Responses in an assay of coddiver oil for vitamin D,
Daose of standard preparation, S Dose of test preparation, T
(BSI units per 100 g food) (mg oil per 100 g food)
576 9-6 16 324 54 90 150
35 62 116 20 26 57 140
30 67 105 39 60 89 133
24 95 91 16 48 103 142
37 62 94 27 —8 129 118
28 54 130 —12 46 139 137
73 56 79 2 77 128 84
31 48 120 31 89 101
21 70 124 B6
-5 94
42
n 9 10 8 7 6 8 7
Sy 274 650 859 123 249 820 855
7 304 65-0 107-4 17-6 41-5 1025 122-1
x -2 0 2z -3 -1 1 3

covered and simplify the arithmetic. The calculations could be executed with
log,q z as the metameter. If instead

x = log.z —log. 96 (4.2.3)
for §, and

x = log.z — }(log, 54 +1log, 90) “4.2.4)
for T, where

e!l=1(5/3)12, (4.2.5)

the doses are represented by the simple integers shown in the last line of Table
4.2.1. Alternatively, in order to avoid negative values, metameters might have
been chosen so that the values of x were 0, 1, 2, for Sand 0, 1, 2, 3 for T}
equations (4.2.3), (4.2.4) have the advantage of making Xg, X7 almost zero (not
exactly, because of unequal numbers of subjects per dose). The essential feature
of the metameter scale is that the same base of logarithms is used for both prep-
arations. The choice of base and the addition of different quantities to the log-
arithms for the two preparations affect only the intermediate arithmetic; a
simple final adjustment removes their effects.

4.3 The dose-response diagram

A diagram (Fig. 4.3.1) showing mean responses plotted against x leads to a
rapid estimation of potency; it also protects against gross errors or misinterpret-
ations of the statistical analysis. The experienced user of assay techniques may
often dispense with the diagram, at least for symmetric designs, because he can
visualize its form without drawing it, but to others a sketch is practically essential.
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Fig. 4.3.1  Linear dose—response regressions for the assay of vitamin D,, Table 4.2.1

X : Mean responses to standard preparation
+: Mean responses to test preparation

The straight lines are those drawn by eye (§4.3), but the calculated equations
(84.11) are almost identical with them.

In Fig. 4.3.1, two parallel lines have been drawn by eye so as to fit the points
approximately. The horizontal distance between these lines roughly estimates
the difference in x between doses giving equal responses:

M = 03. (4.3.1)
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Equations (3.9.11), (4.2.3), (4.2.4) give for an estimate of relative potency:

5
logio R = M x L loge 5 + logyp 9:6 — 3{logyp 54 + logy 90)
= 0-1109M —0-8610 (4.3.2)
= 1-1723. o\ —.81;)3
Hence
R = 0149, 4.3.3)

and the potency of the cod-liver oil is estimated as 0-149 units per mg.
One feature of this assay must generally be regarded as bad: the dose range
for T is wider than that for S. If the range for S was as wide as the experimenter

dared risk in order to be sure of remaining within the region of linearity, his

choice of a wider spread of doses for T was almost sure to take him outside the
range of linearity. If the range for S was not as wide as he dared risk, he was at
fault for not making it wider, at least up to the width used for T. The design
may not be as bad as strict application of the principles of §6.8 suggests. If the
assayist had little previous idea of the potency of T, he might have chosen four
doses, extending over a wide range, with the intention of discarding the data
from that one of the extremes which proved to be outside the region of linearity;
when he found satisfactory linearity over the whole range, he naturally retained
all the data. Even so, the data suggest that a wider range of doses of S could have
been used.

4.4  Analysis of variance

Calculation of the analysis of variance is very similar to that for a single
regression (§3.9). For the standard preparation, summations give:

NS = 27,
Sx=—9x2+8x2
= —2’
%g = —2/27
= —0-0741,
Sy = 1783,
Fg = 6604,
i) Sl =)
Sy = 9x4+8x4———
27 &
19
= 67-8519, b34. 70
—2)x 1783
Sey = —2x 274+ 2 x 859—%—

= 1302-07.
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Similarly, for the test preparation,

NT=28,
Sx = 2,
%p = 00714,
Sy = 2047,
Yp = 7311,

2’2
S = 7x9+6x1+8x1+7x9-—2—8

= 139-8571,
2 x 204

Sey = —3x123—1 x249+1x820+3x855—-x—228—7

= 2620-79.

The analysis of variance, Table 4.4.1, may then be completed. Notes on each
component are given below the table, in the order in which they are most con-
veniently computed.

TABLE 4.4.1  Analysis of variance for Table 4.2.1

1 Adjustment for mean 266 707
Mean -

Nature of variation d.f. Sum of squares square
4 Preparations 1 687 687 Wi tig)
5 Regression 1 74 088 74 088 | G o L
6 Parallelism 1 10 10 G-
7 Linearity 3 2312 771 V.by
3 Between doses 6 77097
8 Error (within doses) 48 22928 - 47767
2 Total 54 100 025

Notes on formation of sums of squares:—
0 (1783 + 2047)? = 266 707
55
(2) 352 +30% +24% + ...+ 847 + 1012 — 266 707 = 100 025
2 2 2 1 1 2 2
2794 +%+%+$+z_‘;&&§?+§%—266 707 = 77097
27 28
(5) Pooled regression component, given by
(Z8xy)? _ (1302:07 + 2620-79)°
S.x  67-8519 + 139-8571
__ (3922-86)°
"~ 207-7090
74 088

3

Cy) —266 707 = 687
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(6) Difference between fitting two independent regression coefficients and one pooled
value is

2 2 .07* 792
2, (Sxy)}_(ESxy) 1 1302.-07 2620-79 — 74 088

£S..  67-8519 " 1398571
=10

(7) 77097 — (687 + 74 088 + 10) = 2312

(8) 100025 —77097 = 22928,

S.‘CI

The components of the analysis must next be examined. Unless evidence of
its unsuitability is found, the mean square from the error line,

$2 = 47767, (4.4.1)

will be used as the basic variance estimate.

4.5 Scedasticity

The error sum of squares comprises contributions from each of the seven
doses. These may be examined separately in a study of evidence for heteroscedas-
ticity. Tests of significance for other validity tests (§84.6-4.8), and assessment
of precision of the potency estimate (§4.14), in theory require that o*(y) be the
same for all doses (§3.10), though experience shows that even quite large depar-
tures from homoscedasticity do not matter much. In more complex designs, to
test the homogeneity of variance may be impracticable, but care in the prelimi-
nary investigation and in the choice of doses will generally remove the risk of
heteroscedasticity so severe as to disturb the estimation seriously.

TABLE 4.5.1  Test of variance heterogeneity for Table 4.2.1

fi Sum of squares st log s}
8 3268 408-5 2-611
54{9 2808 312:0 2494
7 2280 3257 2513

6 1854 309-0 2490

5 4356 871-2 2940
T\7 5392 770-3 2.887
6 2971 495.2 2695
48 22929 4777 2679

Table 4.5.1 shows the seven mean squares, s,?, with their degrees of freedom,
fi; the last line of the table contains the total number of degrees of freedom, f,
and the pooled mean square, 5. A final column shows the logarithms of the mean
squares. Bartlett’s test (§3.11) then gives, by equations (3.11.4) and (3.11.1)

o0 el
=1+ [c+=+2+>+>——)/18 = 10575
e=l (s 6 7 8 9 48)/
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2 T
Xts) = 2:3026 x 1:648/1:0575 Lt
[a ol E

= 3-59; ’
x? is so well below the 005 significance level (12-6) that adjustment by the fac-
tor C' could have been omitted. The data cause no worry about heteroscedasticity.

46 Linearity

A preliminary investigation will be presumed to have established that, over a
range of responses such as occurs here, the regression of bone ash percentage on
log dose is practically linear. The mean square for ‘Linearity’, or, more fully,
‘Deviations from linearity’ should still be examined, as a check that nothing has
seriously disturbed this linearity. Unless accompanied by other danger signals, a
mean square that is large relative to the error would most probably indicate staz-
istical invalidity, that is to say inappropriateness of the form of analysis adopted.
For example, a bad choice of doses for either preparation might take most of the
observations off the linear portion of the response curve: the conditions of simi-
larity and monotony might be fulfilled, so that in theory the data would still be
suitable for an assay, but the assumption of a linear regression would no longer
be justified. This need not be evidence against the inherent comparability of the
two preparations. The assay might be rejected, however, because a satisfactory
linearizing transformation could not be found without more extensive data; it
might be rejected because changes in dose had so little effect on response as to
make any estimate of p hopelessly imprecise; or it might still be usable (see also
§4.22).

The mean square for linearity in Table 4.4.1 is greater than that for error, but
not significantly so; the ratio is not great enough to occasion any alarm.

4.7 The difference in preparations

In an ordinary experiment for comparing treatments, major interest attaches
to differences between treatment means. Here the difference between S and T in
their mean responses is not of intrinsic interest. A large difference, however, will
seldom arise unless the responses to either the lowest or the highest doses of T
lie far outside the range of responses to S, though the converse is not necessarily
true. As already implied (§4.3), this should not happen: if it does, either the
range of doses for S ought to have been wider, or that for T was too wide and
extended beyond the region of linearity. Moreover, as will be apparent from
§4.14, a large difference in mean responses will decrease the precision of potency
estimation (§6.8).

In this assay, at both extremes of dose the responses to 7 lie outside the range
for S, and in the mean response these extremes compensate for one another.
Though the mean square for preparations is only a little greater than the error
mean square, the assay is certainly open to criticism on account of the choice of
doses of T. A large mean square for the difference in preparations is always a
danger signal, but a small one is no assurance that all is well. Results of an assay
like the present should be treated with some reserve, and the response diagram
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should be inspected for any indications of non-inearity at the extremes of the
test preparation regression.

4.8 Parallelism

If other tests had disclosed no significantly large mean squares for linearity or
preparations, a large mean square for the component based on deviations from
parallelism would indicate fundamental invalidity of the assay. When log dose is
used as a metameter, an essential condition for an analytic dilution assay is
that the regression curves are parallel (§3.3). If these curves are linear (§3.7),
non-parallelism would violate the condition of similarity. Whether the initial
assumption that T behaved as a dilution of § was inherently false or whether it
had been obscured by an impurity in one preparation, the data would have to be
discarded. This is without prejudice to the possibility of deliberately using non-
parallel regressions for other types of assay, as suggested by Thompson (1948).
Table 4 4.1 shows no evidence of deviations from parallelism.

If danger signals appear simultaneously in several validity tests, assignment of
the cause to one explanation may be impossible. The whole assay is then suspect,
and should be discarded; whether it is fundamentally invalid or statistically
intractable matters little, except in so far as the planning and experimental tech-
nique for the next assay may be affected.

4.9 Regression

No assay should be undertaken without strong prior belief in the existence of
a regression, without which the dose-response relation is useless for estimating
potency. In a good assay, therefore, the variance ratio for the regression com-
ponent will generally be highly significant. Here it is

oo 14088
47767

= 155-1.

Only when F is large are fiducial limits to the potency narrow enough to be use-
ful (§4.14).

4.10 Significance levels

In the validity tests described in §§4.5-4.8, though a test of statistical signifi-
cance at a probability of 0-05 was implied, each conclusion was so clear that any
reasonable probability would have given the same answer. The assayist need not
use the same probability here as for the fiducial limits. What level is ideal?

Some might think that stringent tests should be applied, especially for paral-
lelism, because of the importance of rejecting invalid analyses: perhaps a prob-
ability of 0-10 should be used instead of 0-05. Others might think this extrava-
gant, because many good sets of data would be rejected on account of the
mischances of random sampling. Experience suggests that, in a well planned
assay, even fairly large deviations from the strict theoretical requirements of
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Response metameter

Dose metameter

Fig. 4.10.1 A suceessful chgice of doses permits a valid estimation of potency from paral-
lel linear regressions, even though the true regressions are curved

X: Mean responses to standard preparation
+: Mean responses to test preparation

l?u]l lines indicate regression curves, broken lines are hypothetical estimated
linear regressions.

statistical validity will have little effect on the estimate of p and not much on the
assessment of its precision. If the design is symmetric, with the same number of
doses for both preparations and equal numbers of subjects at every dose (Chap-
ter 5), and if the assayist guesses his doses of T so successfully that they are
almost exactly equivalent to those of S, a determination of R from the horizontal
distance between linear regressions will be valid, even though the true regression
is curved (Fig. 4.10.1). In such an assay, the assessment of error may be seriously
upset (but see §5.11). With the same true regression, a bad choice of doses may
give apparent parallelism but a hopelessly biased estimate (Fig. 4.10.2), or com-
plete non-parallelism (Fig. 4.10.3), in spite of the fundamental validity of the
assay.

Perhaps the chief danger is that of fundamental invalidity, and a reasonably
stringent parallelism test therefore seems desirable. A deviation from parallelism
significant at a probability of 0-05 should be regarded as sufficient cause for
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Response metameter

Dose metameter

Fig. 4.10.2 Hypothetical results of a (2, 2) assay showing parallelism of linear regressions
but biased estimation of potency; regression curves conform to the condition
of similarity but dose intervals are unequal

% ; Mean responses to standard preparation
+: Mean responses to test preparation

Full lines indicate tegression curves, broken lines are hypothetical estimated
linear regressions.

rejection of an assay, unless extenuating circumstances not only explain the situ-
ation but ensure a statistically valid analysis. Usually the history of an assay
technique for estimating the potency of test preparations with respect to a par-
ticular effective constituent, by an accepted experimental procedure and on a
known stock of subjects, provides a strong presumption of parallelism; without
this, even a deviation significant at a probability of 0-10 should be a little suspect.

When experience of a technique has given grounds for belief in similarity and
in the statistical validity of the method of evaluation of the data, and also when
the current assay gives no evidence against parallelism, less stringent tests for
heteroscedasticity, deviations from linearity, and the difference between prep-
arations might be allowed. As a working rule to be applied and interpreted intelli-
gently, not uncritically, acceptance of the analysis as statistically valid unless one
or more of these criteria are significant at a probability of 0-01 seems reasonable.
The question is not entirely one of statistics; the knowledge of the chemist and
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Response metameter

Dose metameter

Fig. 4.10.3 Hypot}}etical results of a (2,2) assay showing non-parallelism of linear
regressions; regression curves conform to the condition of similarity but doses
fail to correspond

X : Mean responses to standard preparation
+: Mean responses to test preparation

I:‘ull lines indicate regression curves, broken lines are hypothetical estimated
linear regressions.

biologist about the materials of the assay must also be taken into account. For
routine assays, quality control techniques may help interpretation of the criteria
of statistical validity (§5.10).

411 Potency estimation

The cod-liver oil assay is free from evidence of invalidity, and estimation can
proceed. The regression coefficient is estimated as

DSy
i e @.11.1)
392286
207-7090
= 18-89. (4.11.2)
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The regression equations, obtained as

Y = j+b(x—2%) (4.11.3)
for each preparation, therefore become

Yy = 6744 + 18-89x,

Yy = 7176 + 18-89x.

If plotted in Fig. 4.3.1, these would give lines almost identical with those drawn
earlier by eye. All that is wanted here is the difference between equipotent values
of x, the horizontal distance between the two lines, to be reckoned as positive if
the test preparation is more potent than the standard on the scales of x used.
This difference is

A = Kﬂ“;_YE @.11.4)

more usefully written as

M=.'J_fs_.i'q1_" b

equation (4.11.5) differs from that for the standard slope method, equation
(3.15.1), by having %g, % for xg, x. Here

Jriagayly 6041341
M = —00741 — e

_ S ype e

N 18-89

= 0-2288. (4.11.6)

This must be transformed by equation (4.3.2) to give

11644,

logio R
whence

R

0-1460,

as compared with the graphical estimate, 0-149, in equation (4.3.3).

4,12 Fieller’s theorem

In equation (4.11.5), (%5 — ¥r) is a constant set by the choice of doses and
numbers of subjects. Consequently, fiducial limits for M depend upon the second
term, (75— Pr)/b. They are obtained from an important theorem first fully
enunciated by Fieller (1940), though others (Bliss, 1935b) had earlier stated the
particular case for zero covariance.

Is— Iz, (4.11.5)
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The conventions of symbolism are suspended for this and the next section.
Suppose that «, § are two parameters, and write

uo=— (4.12.1)
B
Suppose further that a, b are unbiased estimates of o, 8, each a linear function of
a set of observations with normally distributed errors; the typical situation is
that in which a, b are means, differences between means, or regression coefficients
calculated from experimental data. Freedom from bias implies that

E (@) = ¢,
E(®) = 8,

where E (2) is the expectation of a. An analysis of variance of the data will give
an error mean square, 52, with f degrees of freedom. The estimated variances of
a, b, and their covariance may be expressed as 20y, §204,, 520, respectively,
where 9,1, V43, and v, depend only on the coefficients of the observations in
the definitions of 4, b. For example, if g is the arithmetic mean of certain obser-
vations, vy, is the reciprocal of the number of these observations; if b is a
regression coefficient of y on x, v,, is the reciprocal of the sum of squares of
deviations of the values of x about their mean. Now the natural estimator of u is

m=—, (4.12.2)

Fieller’s theorem states that upper and lower fiducial limits to u aret*

gV2 IS8 vh\| Y2
mp,my = [m——-—-—i— Uy — 2mu gy + Moy —g vy —— (1—g),
: Vy b U

(4.12.3)
where
5%

g = b—zn g e (4.12.4)
and ¢ is the t-deviate with f degrees of freedom (Appendix Table I). The proof
follows from consideration of the expression (¢ —ub). For any u, this also is a
linear function of the observations; it has expectation

E(@—ub) = a—uf = 0, (4.12.5)
and an estimated variance
Var(a —pb) = s*(vy — 2uv1; + uom), (4.12.6)

(drpe symbol ‘t’ generally introduces a standard error. In Fieller’s theorem or one of its
analogues, the symbol indicates the alternative operations of subtraction and addition needed
for the lower and upper limits.
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with f degrees of freedom. Hence (assuming normality), with probability appro-
priate to the r-deviate.

(a _l-lb)z < 25 (v — 2uvp + 1*v); 4.12.7)

the equality sign gives a quadratic equation in g, whose solution is (4.12.3).
When b is large relative to its standard error, g will be small; if g can be
neglected, equation (4.12.3) becomes

My, My = M + [S(Uu —2mvp + mzvn)l’zlb, (4128)
a formula equivalent to using the expression
Vaf(m) = Sz(ff“ —2mv, + mzvzg)f'bz (4.]2.9)

as though it were the variance of m. This variance formula, obtained in other
ways, is often used as a way of attaching a standard error to a ratio, especially in
the form applicable when 74, = 0:

Var(m) _ (gg +g_2_z)_ (4.12.10)

e AEoitabl

The approximation (4.12.8) is adequate if g is less than 0-05, which for limits at
probability 0-95 requires b to be at least nine times its standard error. For large
g, equation (4.12.3) is essential: the approximation much underestimates the
width of the fiducial interval when g exceeds 0-2. New complications arise if g
exceeds 1-0, as b then does not differ significantly from zero (Fieller, 1954).
Detailed study of the inequality (4.12.7) shows that when g =10 one of mp,
my; becomes infinite. When g > 10, the range of values of u that satisfy the
inequality remains infinite, and the limits set by (4.12.3) become exclusive
instead of inclusive: the assertion made with the chosen probability is that u lies
outside the interval my, my. The logic is sound, but the practical value of an
assay with g = 1-0 is small.

Biological assay often requires that fiducial limits be assigned to a ratio of
two means, a ratio of two regression coefficients, or a horizontal distance between
two parallel regression lines. Although many publications on bioassay have used
equation (4.12.9) or some equivalent formula, the extra labour of calculating
from (4.12.3) is so small that routine employment of the full formula is prefer-
able to argument about the adequacy of the approximation. Even for desk calcu-
lation, this should be standard practice; when a computer is programmed for
assay analyses, there is no excuse for not incorporating equation (4.12.3).

413 Analogues of Fieller’s theorem

Valuable though Fieller’s theorem is, it is not applicable to every bioassay in
which estimation involves a ratio. Complications arise when more than one error
mean square must be used; this situation will not be encountered until Chapter 9,
but generalized theorems based on the Behrens distribution are for convenience
presented here. First the nature of this distribution itself, a generalization of the
t distribution, must be considered.
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_ Again suppose that 4, b are unbiased estimates of «, §, defined as linear func-
tions of observations with normally distributed errors, but now with estimated
variances

Vgr(a) = ston,

Var(p) = oy, (4.13.1)

and zero covariance, where 53, s3 are independent mean squares with f;, f>
degrees of freedom respectively. The variance of (¢ — b) is estimated as

Var(a—b) = S%'Uu + S%'Uzz. (4.13.2)

If 53, 52 were the same mean square, the deviation of (z — b) from its expectation
divided by the estimated standard error,

(@e—b)—(@—p)

(2w, + S%vn)m’ (4.13.3)

would follow the ¢ distribution with f degrees of freedom. When s2, s2 are inde-
pendent mean squares, however, this is no longer true, and the distribution of
the ratio (4.13.3) is the Behrens distribution (Appendix Table III; Fisher and
Yates, 1963, Table V;). The ratio, the Sukhatme d-statistic, has a distribution
defined in terms of the degrees of freedom f}, f3, and the angle 8 such that

2
$1P11

tan*§ = (4.13.4)

5303
When 6 is 0°, d is distributed as r with f, degrees of freedom; when @ is 90°, it is
distributed as # with f; degrees of freedom. For other angles, the value of 4 for
any probability is generally (but not always) intermediate between ¢ j and ¢y ;.
Whgn f1 = f1, the value of d for any probability is about equal to, butla little leiss
than, the corresponding ¢, irrespective of the size of §. The d-test is appropriate
for testing a difference between two means or two regression coefficients whose
variances are based on independent mean squares that cannot be assumed esti-
mates of the same population variance and therefore must not be pooled. To
attempt to refer the ratio (4.13.3) to the r distribution may mislead seriously if
f1 and f3 are small.

Suppose now that # and & are known to be estimates of the same quantity
(a = ). They might be two estimates of the same mean, or two estimates of a
regression coefficient, from different sets of observations with different variances.
The most precise estimate that can be compounded of 4 and & is a weighted
mean having the reciprocals of the variances as weights; this is @, where

a : + : N . + b
M S%'U'zz S?Du s%vn’ (4.13.5)
and
-1
Var(g) = L+ 1
stog stuy) (4.13.6)
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The deviation of @ from «, divided by its standard error,

@ -a)( Lot )m, (4.13.7)

2 2
51V 52Uz

follows the Behrens distribution with degrees of freedom f), f2, and an angle 6
defined by

2
v
tan?§ = 2o (4.13.8)
511

(Yates, 1939; Finney, 1951b). Hence the same distribution may be used in test-
ing the significance of the deviation of a weighted mean, 4, from a theoretical
value: alternatively, with d taken as the tabular value for the chosen probability,
it allows fiducial limits to @ to be placed at

1 1 -1/2
i
(Szv“ Szvzg)

on either side of @. This neglects information on the distribution of @ given by
the magnitude of (2 — b); Fisher (1961a, b) has shown how to take account of
the information, which can be important, but no tables exist.

This theory leads to two analogues of Fieller’s theorem. For now suppose
again that i

u:

™|R

is to be estimated. The ratio of (¢ — ub) to its standard error estimated from
Var(a —ub) = sivy; +u%s3van (4.13.9)

follows the Behrens distribution, with f;, f> degrees of freedom and an angle ¢
given by

tal'l2 g = s}?)“/jigsg’vn. (4.13.10)
Asin §4.12, the fiducial limits are the roots of the quadratic equation
(@a—ub)* = d*(stvy + 1?s3022). (4.13.11)

Since d is dependent upon 0, which is in turn a function of u, no explicit solution
of equation (4.13.11) can be given. The solution may be written as

d 1/2
mp,.myg = [m + 'l'; ls%'f)“(l _'g) + mzsg'z)n] ]/(1 _‘g'), (4.13.12)

where
L d?'S%'UTZ :

g =t (4.13.13)

numerical evaluation of my, my;, requires interpolation or iteration, since each
must have its value of d corresponding to the 6 given by equation (4.13.10)
when the fiducial limit itself is substituted for u.
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The second analogue of Fieller’s theorem requires no iterative calculations,
but its statement is more complicated. Suppose that @, b, and a,, b, are inde-
pendent pairs of unbiased estimates of a, § as were a, b in §4.12. The variances
and covariance for the first pair, s3v,,, s30,,, and s32,5, are based upon a single
mean square, s; with f; degrees of freedom. The corresponding quantities for
a,, b, are based upon an independent mean square 5% with f, degrees of freedom,
but are in the same ratios as those for a,, b,; they may therefore be written
s2kv .1, s3kvyp, and s3kvy,, where k is known. The second adaptation of the
Behrens distribution can give fiducial limits for a ratio of weighted means of
ay,a; and bl,bg.

The theorem in §4.12 applies directly to the determination of fiducial limits
for a,/b; or as/b, as estimates of u. If mean values @, b are determined by weight-
ing inversely as the variances, so that

7 ! 1 ay ay
a + = + : :
(s%”“ "‘”gk"’u) ston  sikvy (4.13.14)
and i ) ¢ ;
E + = 1 4o 2 ‘
(S%v 22 S%kﬂzvz) 5'%1’22 S%krgzz (4.13 15)
the ratio
ek (4.13.16)
seems likely to be a more precise estimate of g than either m, or 7,. Now
1
Var@) = vyl|l5+—
ar(a) 11 (S} kS%) s (41317)
Var(h) = v _1.+L_l o
. st ks3] (4.13.18)
and the covariance of @, b is
Cov(@,b) = v l+i_1 P s
: P\t k) (4.13.19)

The weights used in forming @, b are proportional; the variances and covariance
of the weighted means therefore preserve the same ratios as those of ;, b, and
a,, b,. Consideration of (@ — ub) then gives a quadratic equation for the fiducial
limits of m:

(@—ub)? = d*(v,, —2uv,2 +p2vn)/(lz+iz), (4.13.20)
s1  ksi
where 4 is a tabular value for fy, f, degrees of freedom and
tan? 8 = ks3/st. (4.13.21)
If s? be defined by
=1
st = (sl—§+ 5}2) ) (4.13.22)
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equation (4.13.20) becomes identical with the equality in (4.12.7), except that d
replaces 7. Hence the solution of equation (4.13.20) may be written in the same
form as equation (4.12.3):

ds | 22 12
Mg, g = M — = Dy — 2RV, + WPy —g vy — 5 (1—g),
Uy b V22

oyt (4.13.23)

g=

dzszvgg

B2

The condition that the variances and covariance of a,, b, should be in the
same ratio as those of a,, #; might seem so restrictive as to make the theorem
useless. It will be fulfilled, however, by two experiments of the same basic design
but possibly different replication — for example, two randomized block exper-
iments for the same treatments, but with different numbers of blocks. The result
is therefore useful in the combination of evidence from two assays. If ks3 is
large relative to 53, the information on p provided by a,, b, may be negligible, %
becomes the same as m1,, d becomes ¢ for f degrees of freedom, and in the limit
Fieller’s theorem applies.

Generalization of the Behrens distribution to include more than two com-
ponent variances is conceptually possible, but neither the theory nor tables for a
generalized d have been developed. This could form the basis of a further exten-
sion to equations (4.13.5)-(4.13.8),and hence to an analogue of Fieller’s theorem
appropriate to a combination of several assays of similar design. The principle is
obvious, and the problem arises again in Chapter 14. A different approach to the
combination of estimates from two or more assays is presented in §14.3.

(4.13.24)

4.14  Fiducial limits in the vitamin D5 assay
Equation (4.11.5) can be written

M—j%g+5p = yT—;—y—ﬁ. (4.14.1)

Since (¥g — ¥7) is a constant imposed by the choice of doses, fiducial limits to M
may be found by applying Fieller’s theorem to the ratio (7 — 5)/b and adding
(% — %p) to the results. From equation (4.12.3), the limits to (M — Xg + %7) are

2Y1/2
[M—xs+xT-—{(l —g)(N +A7)+(M ;‘;”T)} ]/(1—@
‘ S T xx (4 14,))
where :

2.2
e et " (4.14.3)

With 5 taken from equation (4.4.1),
_ _(2010) x 47767
(18-89)2 x 207-7090
= 0-0260.
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An altemnative form of calculation is sometimes more convenient; g is the ratio
of the tabulated significance point for the varance ratio for ‘regression’ to the
value calculated from the analysis of variance. The variance ratio here has (1, 48)
degrees of freedom, whence (Appendix Table II)

4:04 x 477-67
74 088

= 0:0260.
From the form of equation (4.11.6), the limits to (M + 0-1455) are

T+ 3
2:010 (0-3743)*

03 + T o i 6 :

[ 743 18-89/[0 9740(27 28) 207709 ] x 477 7:'/0 9740

[0-3743 + 0-6220]/0-9740
= —0-2543, 1:0229.

Therefore
M; = —0-3998,
My = 0-8774.

Equation (4 3.2) gives
logm RL = I'0947, ‘0' 055

logo Ry = 12363, 'O'_V'L“’b[]
whence
Ry = 01244,
Ry = 0:1723.
The expression
Var(M) = E; 1\: +NT ﬂ%"“‘) , (4.14.4)

frequently quoted as the variance of M, is equation (4.12.9) in the present
notation, For these data, approximate fiducial limits to M are obtained by sub-
tracting and adding 2-010 times the standard error (here 0-3135) as in equation
(4.12.8). Table 4.14.1 summarizes the results. Evidently g is so small that it
could be ignored without harm. Nevertheless, the safer practice of always using
Fieller’s theorem is little more trouble. Both pairs of limits are presented here
for the sake of comparison. Where the concern is with conclusions from assays
and not with statistical methodology, quotation of both ‘exact’ and ‘approxi-
mate’ fiducial limits is to be deprecated as a waste of space on irrelevant and mis-
leading quantities. When g is large, Fieller’s theorem should always be used, and
values based on any formula for Var (M) are wrong.

Thus the vitamin content of the cod-liver oil is estimated as 0-1460 units
per mg, and the assertion is made that the true potency lies between 85 percent
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TABLE 4.14.1 Estimated potency of cod-liver oil (units
vitamin D; per mg)

Calculated
Graphical
Ignoring g | Fieller’s theorem
Potency 0:149 0:1460 0-1460
Lower limit — 0-1243 0-1244
Upper limit - 0-1715 0:1723

and 118 percent of this. The fiducial limits are calculated from the internal evi-
dence of a single assay, yet their subsequent use is likely to assume that they
measure the agreement to be expected between results of repeated assays of the
same test preparation (cf. Finney, 1971, §9.6). Provided that the condition of
similarity is fulfilled and that assumptions implicit in the statistical analysis
(linearity, homoscedasticity, normality, etc.) are substantially correct, this is
justifiable. Potency ought then to be independent of assay technique (§3.4), and
the assessment of sampling variation expressed by the fiducial limits ought to
have universal validity. The assayist must guard against a too-ready belief that
all conditions are satisfied, and that repeated assays will agree within the limits
indicated by intra-assay variances. Published experimental verifications are few.
Young and Romans (1948) reported satisfactorily consistent potency estimates
for 21 insulin samples when each was assayed several times within a few days.
Jones (1945) found X-ray and line test assays of vitamin D to agree well during
a period of more than three years. Sheps and Munson (1957) proposed a method
for taking account of inter-assay variance of M as well as of intra-assay; in a series
of androgen assays, they found an important inter-assay component, but did not
reconcile this with the general theory of bioassay. The European Pharmacopoeia
(1971) explicitly counselled that, where possible, precision should be assessed in
terms of a simple error mean square calculated from potency estimates from
independent assays.

4.15 Data for a symmetric assay

The analysis of the vitamin D assay was complicated because of the unsym-
metric design. The coming discussion of the principles of design (especially Chap-
ter 6) may be anticipated by the statement that symmetry is one desirable
feature. The simplest symmetric parallel line assays have only two doses of each
preparation: the high and low doses of the two preparations have the same dif-
ference on the logarithmic scale, and the total number of subjects is divided
equally between doses,

Table 4.15.1 contains data from an assay of oestrone using 7 litters of 4
ovariectomized female rats each. Each rat was injected daily with one of the four
experimental doses, 0-2ug and 0-4 ug of the standard oestrone and 0:0075ml
and 0-015 ml of the test preparation. The response was the weight of the uterus,
expressed as mg per 100 g body weight and measured at a fixed number of days
after treatment of the animals (Biilbring and Burn, 1935). This method of
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TABLE 4.15.1  Weights of uteri of ovariectomized rats, in mg per 100 g body weight
Daily dose
Litter Qestrone Test preparation Totals
0:2 pg 04 ug 0-0075 ml 0-015ml

1 54 152 61 92 359

il 49 71 74 63 257

I 51 112 51 (87) 301

v (50) 58 60 102 270

v 81 102 (82) 120 385

VI 63 (111) 83 105 362

Vil 126 (133) 83 108 450

Totals 474 739 494 677 2384
Means 677 1056 70-6 96-7

Five responses are shown in parentheses, for reasons explained in §4.21.

adjusting for the sizes of the subjects will be criticized in §12.6; here records of
body weights are no longer available and therefore covariance analysis could not
be tried. If litters were to differ in mean uterine weight, as might be expected,
the precision of the assay could have been adversely affected by inter-litter vari-
ation. This was avoided by adopting a common device, a randomized block
design; one animal from each litter, selected at random, was assigned to each of
the four doses. For simplicity, some liberties have been taken with the data, as
explained in §4.21.

The reader should draw a dose-response diagram for the mean responses in
Table 4.15.1. A convenient dose scale, using logarithms to base +/2, makes
(x.—x) equal to — 1 for the lower, + 1 for the upper dose of either preparation.
The two preparations may have different origins on the x scale, and a simple
choice is that which makes the two lower doses have the same scale point. Paral-
lel regression lines drawn by eye in this diagram give a rough estimate of potency.
One version of the diagram had lines 0-18 apart in a direction parallel to the axis
of x. Hence

M= is_fT—O'ls,
and, using a formula similar to equation (4.3.2),
logio R = logyo 0-2 —logye 0-0075 —0-18 x £ x logyo 2, (4.15.1)

since symmetry makes (Xg— %p) equal to the difference in x values for corre-
sponding doses. Therefore

D o173 4
00075 ilog (4.15.2)

=25,

R

and 1 ml of the test preparation is estimated to contain 25 ug oestrone.
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416 Analysis of variance

Table 4.16.1 shows the analysis of variance of the 28 entries in the body of
Table 4.15.1. The subdivision of the total sum of squares into components
‘between doses’, ‘between litters’, and ‘error’ follows the usual procedure for a
randomized block design: for example, the sum of squares between doses is

(474% + 7392 + 4942 + 677 — 7 x 202 981)/7.

Subdivision of the dose component into squares for three separate degrees of
freedom can be effected by the same steps as were used to give lines 4, 5, 6in
Table 4.4.1. For a symmetric design, orthogonal contrasts as illustrated in Table
4.16.2 are more convenient. The dose totals are multiplied in turn by each row
of coefficients and summed to give the sums of products in the last column, each
of which will be denoted by the letter L with a distinguishing subscript. These
sums are squared and divided by the divisors shown; the quotients are the com-
ponents for Table 4.16.1.

TABLE 4.16.1  Analysis of variance for Table 4.15.1

Adjustment for mean 202 981
Mean

Nature of variation d.f, Sum of squares square
Preparations L 1 63 63
Regression 1 7168 7168
Parallelism 1 240 240
Between doses 3 7471
Between litters 6 7 069
Error 18 7 165 398-1
Total 27 21 705

TABLE 4.16.2  Coefficients of orthogonal contrasts for the (2, 2) design, applied to Table

4.15.1
Dose 5, S, T, T, Divisor Sum
Response total 474 739 494 677 28 2384
Preparations (Lp) —1 —1 1 1 28 —42
Regression (L,) —1 1 —1 1 28 448
Parallelism (L)) 1 —1 —1 1 28 - 82

Coefficients such as those in Table 4.16.2 lead to a subdivision of the sum of
squares for doses only if:

(i) Each row of coefficients represents a contrast amongst the individual
responses; that is to say, if each sum in Table 4.16.2 is written at length in
terms of individual responses, the set of coefficients for these responses
adds to zero;

(i) Every pair of contrasts is orthogonal; that is to say, if each contrast is
expressed in terms of individual responses, the products of corresponding
coefficients for any pair add to zero.
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Because each dose total in a symmetric design contains the same number of
individual responses, these conditions also apply to the coefficients of dose
totals. Since

—14+1—14+1=0
the line for ‘Regression’ represents a contrast, and since
(—Dx1+1x(D+(x(=1)+1x1 =20

the contrasts for ‘Regression’ and ‘Parallelism’ are orthogonal. The divisors are
calculated as the sums of the squares of the coefficients of individual responses;
for ‘Regression’,

Ix (1P +7x12+7x(—1P+7x1% = 28,
If the variance per response is 62, the variance of a contrast value is ¢ multiplied

by this ‘divisor’. A consequence of these conditions is that the squares for the
separate contrasts must add to the sum of squares for doses; here,

472 2 (_goy2
(—42) 4 448 +( 82)
28 28 28

= T7471.

Any sum of squares of deviations can be subdivided into single squares for
mutually orthogonal contrasts, in number equal to the degrees of freedom, in an
unlimited number of ways. The set in Table 4.16.2 is chosen as peculiarly relevant
to the object of the analysis of variance. The three squares are exactly the same
as would have been obtained from the general method of §4.4. The first contrast
gives the difference between totals for the two preparations; the second has
(x —X) as its coefficients, so that the sum is ZS,,; and the third gives the differ-
ence between values of S,, for the preparations. Bliss and Marks (1939a, b)
showed the advantages of such coefficients in the analysis of assays (cf. Chapter

5).

4.17 Validity tests

As in §84.7 and 4.8, the mean squares for preparations and parallelism must
be compared with the error mean square. Neither is significantly large, so that on
these counts the validity of the assay need not be doubted. The great flaw in the
desipn is that it gives no test for linearity, since only two points on each response
curve are studied. A genuinely non-linear regression might manifest itself as non-
parallelism, at least if the doses had been so unsuccessfully chosen as to give also
a large difference between preparations (Fig. 4.10.3). On the other hand, if doses
of T were so chosen that they were almost equal in effect to corresponding doses
of §, the fitted lines would appear satisfactorily parallel, even though the true
relation was far from linear (Fig. 4.10.1). As pointed out in §4.10, this will not
bias the estimation of potency appreciably, but may upset the assessment of
precision. Assays should usually be planned to include at least three doses of
each preparation (§6.10), unless the material under assay is so well understood
as to remove all fear of non-linearity. No assay designed in randomized blocks
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allows a test of scedasticity, but this is usually less important once an assay tech-
nique is well established.

4.18 Potency estimation and precision

The construction of Table 4.16.2 makes clear that the contrast labelled L, is
the difference in total responses for the two preparations. Hence

Jr—Fs = Lp/14 (4.18.1)
= —42/14
= —3:00.

Moreover, the divisor and sum for the regression contrast, L, are Z5,, and
TS, respectively, and therefore, by equation (4.11.1),

448/28
= 16-00.

Equation (4.11.5) now gives
M = %g—%p—0-1875,
and, by equation (4.15.1),

02
= tilog (— 01875 x 01505
R 0_0075an10g( 0-1875% 0 )

= 250.

Fiducial limits may be found by Fieller’s theorem, using the error mean square
in Table 4.16.1:

s? = 3981

as the variance per response. By the well-known elementary property of a linear
function of independent observations, the variance of any contrast can be written
as the variance per response multiplied by the sum of the squares of the coef-
ficients of individual responses in the contrast. The rule by which the divisors in
Table 4,16.2 are calculated shows this to be expressible as

Var(L) = s* x Divisor (4.18.3)
for any contrast, or
L g
A% = ; 4.18.4
i (Divisor) Divisor ( )

Consequently, from equations (4.18.1) and (4.18.2),
Var(pr—Fg) = s%7 (4.18.5)
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Var(h) = s%/28. ' (4.18.6)

By equation (4.14.3)

_ (2-101)* x 398-1

(16-00)* x 28

= 0-2452,
or, from Table 4.16.1 and the alternative method in §4.14,

_ 441 %3981

7168

0-2449,

a value that is arithmetically slightly less accurate. From equation (4.14.2), the
fiducial limits to (M — %g + Xp) are

2-101 }{0-7548 0-1875% ya
—01875+ + - 075
[ 752001 {( L )xm 1] i
[—0-1875 + 0-8653]/0-7548

= —1-3948, 0-8980.

Il

Therefore
0- )
= tilog 1- 68
Ry, 00075 antilog 1-7901 .
Ry = —22_ intilog 0-1351 = 364
U~ 00075 B '

Thus the potency is estimated to be 25-0 ug per ml, with fiducial limits at 16-5 ug
and 364 pg per ml.

4.19 Constraints of design

The design of any experiment determines the character of the proper statisti-
cal analysis. In the oestrone assay, litter-mate control was adopted so that differ-
ences between litters would not affect the estimate of potency or the assessment
of its precision; to analyze the data of Table 4.15.1 ignoring the litter classifi-
cation would be logically wrong and possibly very misleading.

An assayist might find it convenient to put all identically treated animals into
one cage (or, in a microbiological assay, to put all tubes of the same dose in
adjacent positions in the incubator). Rarely is this advisable, for it confounds
(§9.2) differences between doses with differences between cages: the several
animals in one cage are not true replicates of the treatment for comparison with
differently treated animals in another cage. Interaction between the animals in
one cage, such as competition for food, may make individual responses different
from what they would have been had all animals been caged separately, so pro-
ducing a variance between cages different from that within cages. Anyone who
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analyzes the responses without regard to cage differences is in effect asserting
that these differences are negligible, and that he may legitimately assess the pre-
cision of potency estimate from variation within cages in spite of the fact that
the dose contrasts used are made befween cages; the experiment itself can provide
no test of the validity of this assumption, unless each dose group is spread over
two or more cages. Even though the animals were caged individually, the same
difficulty would arise if all cages for one dose were placed close together in the
animal house. From extensive experience, Emmens (1948, §13.5) wrote: ‘There
has been in biological work a considerable tendency to ignore the possibility of
differences in reaction due to animals being caged in distinct groups and it seems
to have been tacitly assumed that variation between cages must be negligible. It
must be a rarely designed animal house in which conditions are so uniform that
this assumption can be justified, and in the light of our knowledge that a variety
of responses are influenced by health, temperature, light, feeding and many
other factors, it would always seem worth while so to arrange our preliminary
trials that the contributions of these factors to differences in the location of test
objects may be examined’.

The statistical analysis of an experiment is a small part of the total labour,
and its costs should not influence the choice of design (§6.6). The arrangement
of subjects in cages, the randomization of order in an animal house, or the ran-
domization of order of testing, may bring the convenience or even the practica-
bility of an experiment into conflict with the ideal statistical conditions. Complex
designs (Chapters 9 and 10) sometimes enable the statistician to overcome these
difficulties, but the very complexity of a design can also make it impossible of
application. Individual caging of subjects, or a complicated arrangement of tests,
may so much increase the risk of gross mistakes or the costliness of an- exper-
iment as to make it completely impracticable. The statistician must recognize
that these situations do arise, and must be prepared for some compromise with
the exigencies of experimentation. He will need to make clear to the assayist the
price that must be paid for the use of a statistically inferior design: loss of pre-
cision or, more serious, conclusions whose validity rests upon an untestable
assertion about the unimportance of certain sources of variation. If the assayist
is satisfied that these disadvantages do not outweigh the advantages of the design,
the statistician’s responsibility is ended.

Ideally, animals in an assay are caged individually,caged in groups correspond-
ing to one of the uninformative classifications of the experiment (such as litters),
or caged in some new groupings, orthogonal with all others, for which a sum of
squares can be isolated in the analysis of variance. If individual caging is impracti-
cable, and the assayist is reluctant to cage together animals that are being differ-
ently treated (possibly for the good reason that they would affect one another),
he should at least aim at dividing each dose group between two or more cages.
The analysis of variance will then show separate residual mean squares between
and within cages; if the first is significantly larger than the second, it must be
used as the basic s* for subsequent calculations.

When faced with the results of an assay for the detailed design of which he
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was not responsible, the statistician must discover exactly how the experiment
was arranged and conducted. Bitter experience will teach him how easily an
experimenter may fail to mention the existence of a constraint, because of failure
to realize its relevance to the statistical analysis: in some instances, the appear-
ance of the data may arouse the suspicions of an alert statistician, but in others
only the most careful discussion of the experiment with the person responsible
for its execution will elicit information that vitally affects the statistical analysis.

420 Heterogeneous deviations from linearity

Deviations from linearity of regression were discussed in §4.6. If an assay in
which several doses of each preparation were included shows significant non-
linearity, inspection of the dose-response diagram may show either of two situ-
ations. Systematic deviation of the points from the calculated straight lines may
indicate that the true regressions are curved (cf. Fig. 4.10.1); the linear regression
model is wrong, and must be rejected in favour of a different metametric trans-
formation or a different method of analysis. Alternatively, the points may show
considerable scatter about the lines yet appear completely erratic in their devi-
ations; this may be a manifestation of an unusually complicated dose-response
relationship, but often a more plausible explanation is heterogeneity of the
batches of subjects at different doses. Even though the true regression be linear,
if subjects were not assigned at random to doses (or if indeed the batches were
knowingly made up from different sources), the deviations of mean responses
from the regression lines will be greater than is predicted from variations within
batches. Similar trouble may arise if different doses have to be tested on different
occasions, and experimental conditions change between occasions.

If the assayist is prepared to accept heterogeneity between the dose groups,
rather than a very complex regression curve, as the explanation of erratic devi-
ations from linearity, the mean square for deviations from linearity may be used
as the estimated variance per response in all subsequent tests and assessments of
fiducial limits. Randomized allocation of groups, occasions, or other classifi-
cations, to doses is essential. For example, if only one dose per day can be tested,
and the doses are used in systematic order on successive days, any secular trend
in experimental conditions will bias estimation of the regression coefficient; a
random order of doses will ensure that deviations about regression lines give a
valid estimate of the random errors of experimentation. In an assay of an insecti-
cide, successive batches of insects from a single culture might show a steady trend
in sex-ratio; random allocation of batches to doses ensures that the estimation of
potency and the assessment of precision are unbiased by any correlation of sex-
ratio with response (Bliss, 1939; Murray, 1937). When the only alternative is to
reject data as worthless, the temptation to accept the mean square for deviations
from linearity as s2 is strong. The critical reader will appreciate the need for
restraint. To assume randomness when no random element has been incorporated
into the design is a great risk. For validity of such a variance estimate, theory
requires the number of subjects to be the same at each dose, but in practice slight
inequalities do not matter.
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When only two or three doses of each preparation are tested, discrimination
between the two types of significant deviation from linearity is impossible. This
might appear opposed to the recommendations of §6.10 on the number of dose
levels. In reality, the right course is almost always to choose an assay design that
makes proper randomness consistent with inevitable restrictions on experimental
technique, thus avoiding any need for an estimate of variance based upon devi-
ations from linearity. If this is not practicable, the case for four or more doses of
each preparation is strengthened. The data of Table 4.2.1 give only 3 d.f. for the
linearity mean square; if fiducial limits had to be based on this, they would have
suffered from the imprecision in the estimate of variance. An illustration of the
use of the linearity mean square as s* occurs in §16.2. In assays using quantal
responses, the same problem may arise: the heterogeneity factor (§18.1) has the
same function, and the same unsatisfactory basis, as the variance estimate just
described.

It is important to avoid any automatic rule of rejecting assays on account of
non-linearity or other aspects of statistical invalidity. As Humphrey et al. (1953)
have emphasized, a rule based solely on individual significance tests would merely
result in the most precise assays being rejected! A truly linear regression is a
rarity, and to penalize all assays in which high precision detects non-linearity
is folly. To formulate an ideal policy is difficult, as significant non-linearity at
least indicates that precision is'less good than the error mean square suggests.
Humphrey’s practice seems somewhat less desirable than the use of a different
mean square for s%, but the question deserves closer study by those concerned
with large numbers of related routine assays.

421 Missing values

Even in the most carefully conducted experiment, an accident or unforesee-
able circumstance may cause the loss of a subject and so destroy the symmetry of
a design. Restrictions on the subjects available for use may even prevent adoption
of a symmetric design. In the assay to which Table 4.15.1 refers, the responses
recorded for five of the litters relate only to three rats; whether this was because
only three female litter-mates were available or because animals were lost during
the experiment is not now known. The missing records correspond to the posi-
tions marked by parentheses in Table 4.15.1. If the reason was that five litters
had only three females, the design adopted was about the best that could be con-
trived; certainly it was preferable to omitting one dose entirely or from each of
the five litters.

When observations are missing from a randomized block or more complicated
design, special procedures are required to prevent the gaps inducing biased com-
parisons of dose means. This is because the orthogonality is destroyed: if the
coefficients of Table 4.16.2 are applied to a new version of Table 4.15.1 that
contains only the 23 genuine responses, neither the contrast nor the orthogonality
condition is satisfied. Inspection of the data indicates large differences between
litters, so that simple averaging of columns would give an unfair representation.
Litter 1V, for example, gave low results, and therefore the average of the
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responses of the other six litters for the lower dose of § would give too high a
value relative to other doses.

One way of overcoming the difficulty is to calculate from the genuine records
values that, when inserted in the empty spaces of the table, will remove any dis-
tortion in the means. The general procedure is to use symbols ¥, y2,V3, ... t0
represent the missing values, to perform an analysis of variance of all the data in
terms of these symbols, to express the error sum of squares as a quadratic func-
tion of the unknowns, and then to determine yy, ¥, ¥3, . . . by the condition
that the error sum of squares shall be a minimum. This is a standard adaptation
of the analysis of variance. When a single value must be calculated in a random-
ized block design, it leads to the formula

2 rR-f-cC—G‘
T r—Dle—1)

r is the number of rows (here litters) in the table of results and R the total of all
genuine data in the same row as the missing entry,™’ ¢ is the number of columns
(here doses) and C the total of all genuine data in the same column as the miss-
ing entry, and G is the total of all the data. Equation (4.21.1) represents a com-
promise between the average of all other entries in the same row and the average
of all other entries in the same column. When more than one entry is missing,
the formula may be applied iteratively. Values are guessed for all except the first,
and the formula is used to calculate the first; the result, together with all guessed
values except that for the second missing entry, is then used in a calculation of
the second, and so on until all have been calculated. The process is repeated so as
to revise the first, second, . . . values with the aid of the results of the first set of
calculations, and the iteration is continued until two successive cycles agree
c_l_oseiy. The final values are independent of the initial guesses.

In the oestrone assay, ¥1, Y2, ¥3, Ya, ¥s represent the missing responses in
Litters III, IV, V, VI, VII, and the formula for iteration is

(4.21.1)

y = (7R +4C—G)/18.

The process may start with any values, for example 100 for each of y,,¥3, ¥4,
5. Remembering that R, C, G must include every response except the one cur-
rently being recalculated, the formula gives

yi = (7x214 +4 x 590 —2321)/18 = 85
and then
y2 = (7x 220+ 4 x 424 —2306)/18 = 52

and so on. The complete iteration is

* . . =
()5 mc_)me_ntary use of R in a sense different from relative potency should not confuse the
reader; it will occur only when missing data have to be discussed.
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Y1 Ya Y3 Ya Vs
Start — 100 100 100 100
Cycle 1 85 52 84 105 132
Cycle 2 87 50 82 111 133
Cycle 3 87 50 82 111 133

Any alternative starting values would lead to the same results. Although iteration
could be continued to establish one or more decimal digits, in practice it is point-
less to evaluate to greater accuracy than that of the recorded responses.

The possibility of calculating ‘missing values’ in this manner is no justification
for careless experimentation, either in choice of design or in failure to make
complete records. Though the calculated values are estimates of the responses
that would have been found in a complete experiment, they do not create infor-
mation by some statistical trick. Their primary function is to eliminate bias in
the comparison of means. Table 4.15.1 was in fact constructed by insertion of
the values just calculated, and in §§4.16-4.18 the assay was analyzed without
comment. However, in an analysis of variance using calculated entries as though
they were genuine, the error mean square is an unbiased estimate of the variance
per response only if the number of degrees of freedom for error is reduced by
the number of missing entries inserted. The loss of information is felt when
mean responses for different doses are compared. In particular, though the func-
tions of mean responses used in the formation of (§—Jg) and & are unbiased,
their variances are increased.

422 Approximate analyses for missing values

The simplest adjustment that can be made to take account of the missing
values in the oestrone assay is merely to use the correct degrees of freedom for
error, (18 — 5). From Table 4.16.1, the variance should be estimated as

s2 = 7165/13
= 5512,

Repetition of the calculations in §4.18 with this value for s* and 13 d.f. gives
fiducial limits 14-3 ug and 40-6 ug per ml.

Had only one response been missing, this would have been fairly satisfactory.
With this high proportion of 5 missing out of 28, the approximation is not very
good. A further modification will commonly give conclusions near enough to
those from the exact analysis in §4.23. This consists in obtaining L,, L, from
the estimated values in §4.21, using equations (4.18.1) and (4.18.2), but writing

Var(L,/14) = s* (%+ %+ %+é)/4 (4.22.1)
= 0175 5%
il iy sz(L+L+i+i) / 16 @222)
6. 5.6 b
= (:043 75s5%;
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these are based upon assigning to the mean for each dose an effective variance
s%/6 or s%/5, instead of 5%/7, because only 6 or 5 genuine response measurements
are available. Recalculation from this point on exactly as in §4.18 gives

g = 04395,

and then a potency estimate of 25-0 ug per ml but with fiducial limits, obtained
by using equations (4.22.1) and (4.22.2) in Fieller’s theorem (assuming zero
covariance), at 12-8 ug and 44-1 ug per ml.

The limits found by this approximation are a little narrower than the correct
ones in §4.23, but are close enough for practical purposes. Had only one or two
entries been missing, the approximation would have been still more satisfactory.
On the other hand, had the missing entries left the design even more unbalanced
(e.g. three missing from the S, dose and two from T,), it might not have been
good enough. Yates’s method (1933) for calculating the variances of contrasts
between means after adjustment for missing entries could be adapted for use
here. In any assay for which neither method in the present section is good
enough, however, the full analysis illustrated in §4.23 is today so little more
laborious that it should be used.

4.23  Exact analysis for missing values

The contrasts expressed by the coefficients in Table 4.16.2 are mutually
orthogonal only when true responses have been recorded for all subjects, as was
originally assumed for Table 4.15.1. The calculations in §4.21 provide for the
five empty spaces values that are functions of the other 23. If these were written
in full, it would become apparent that Lp, L, L are still contrasts but are no
longer orthogonal and no longer have variances given by equation (4.18.3). Exact
analysis could proceed on these lines, with examination of the contrasts for Ly,
L} determination of their variances and covariance as linear functions of the 23
responses, and application of Fieller’s theorem to L,/L,.

This would be tedious, and would require new examination of contrasts for
each new configuration of missing values encountered. General methods of fit-
ting constants or solving least squares problems for linear models can be applied;
unless care is exercised in formulation of the problem and the parameters, the
arithmetic can become heavy, involving inversion of a fairly large matrix. An
easier procedure to adopt as standard for bioassay is that based upon multiple
linear regression. The great advantage is that the computing routine is widely
known, standard programs are available on almost all scientific computers, and
even on desk calculators an operator with a little experience of statistical calcu-
lation will need minimal special instruction. Although described here in terms of
a very simple assay, the method readily adapts to other situations.

The key lies in the realization that all the information required for validity
tests and for potency estimation is contained in a set of contrasts between doses.
In the oestrone assay, these are three, and they can be formally identified with a
set of three partial regression coefficients. Introduce three dumnty variates, x,,
X3, x3, defined to take the following values at the four dose levels:
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S S T, Ty CIE- -1
x, = —1 =) 1 1 S| & =al s
x; = —1 1 | 1 —~ \
x3 = 1 =l ~1 1 8| af2%E
| IR
! The variates have the same values as the coefficients in Table 4.16.2, and x; is |
the (x — %) of the earlier analysis. For complete data with no missing entries, the
regressions on x;, x3, X3 would give the sums in the last column of Table 4.16.2 2| . =4 3
as the various S,,. Because of orthogonality of the dummy variates, the three 2[ :,3‘“ “l‘a E
squares for preparations, regression and linearity in Table 4.16.1 would then be '
computed as the squares attributable to the separate regressions. .Z-.: gl = [eRd
The method may be applied to the genuine data of Table 4.15.1, after | E N B
omission of bracketed entries, and is numerically equivalent to other methods % L1
mentioned above. An analysis of variance and covariance for xy, xq, X3, y is 5
made, all distinctions between columns (doses) being dropped since these are 2 5 K S2a|
taken account of by the independent variates. Sums of squares and products are % S| oo é
calculated for the 22 d.f. between the 23 responses, and components with 6 d.f. g1 | I
Il for litter differences are subtracted. Some litters contain four responses and e wm | n
‘ some only three. For y, for example, the sum of squares for litters is § g %] EE E
| 19212 4 ot o Aol
‘ ' 1(3592 + 257%) + 4(214% + 220% + 303 + 2512 + 317*) — = 4786; g
dilan | s e
i similarly, the sum of products of x,, y for litters is 913 :_ B3
'E S| oy @~
%(—1x214+1x220+1x303—1x251—1x317—(;w=6-81. § | !
i '5 v coen | v
The reader should have no difficulty in checking the details of the analysis in f g %] § § ﬁ
i Table 4.23.1. = R
‘ The within-litter regression coefficients, b,, by, b3, are the solutions of % i i
{ vy
L S Syl - R
| 3 3 3 35 ~| oA~
!‘ 4. .64 4 1006 q
|‘ 3b; + 3 b+ 3b3 Ll (4.23.1) E § :: é‘% g
| o e S 116 AR Eahe -1
i‘ 3b1+3b2+3b3—'—""3_.
| In these equations, exact numerical values have been inserted (instead of their =] I
' ’ decimal expressions in Table 4.23.1) because they are here so simple in form. [
Solution requires inversion of the 3 x 3 matrix of coefficients: g %
i 64 4 —4 B2l w
mia| dp
'l U oa a4 4. “232) HEEE
| 3 El 2| 85
2l % E=| & \
2 2| A
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By standard procedures, such as are well described by Searle (1966), the inverse
matrix is found to be

15 —1 1
3
v=—=—[|-1 15 -1} (4.233)
952
1 -1 15

Those unfamiliar with matrices may note that, for an initial matrix that is sym-
metric, the sum of products of corresponding rows is unity; for example, from
the second rows in (4.23.2) and (4.23.3)

(—1x4+15%x64—1x4)952 = 1.

Sums of products of non-corresponding rows are zero; from the second row of
(4 23.2) and the third of (4.23.3)

(1x4—1x64+15x4)952 = 0.

To be able to take advantage of simple expressions in fractions is unusual. In
many practical situations, the inversion would have to be done decimally; many
digits would need to be retained in V as an aid to checking and as a guard against
arithmetical inaccuracy arising because differences between nearly equal quan-
tities are evaluated. Matrix inversion is an arithmetical operation especially well
suited to high-speed computers, and appropriate routines are always included in
standard programs for regression and covariance analyses; even these can be
inaccurate for large matrices. A desk calculator can be used, but the labour of
inverting a 6 x 6 or larger matrix is then liable to be very heavy.

The element in row i, column j of V may be denoted v;;. The regression
coefficients are then obtained as sums of products of the quantities on the right
of equations (4.23.1) with each row of V in succession. Thus

b; = (—22v;, + 10060;; — 1160;3)/3, (4.23.4)

using the obvious exact fractional values. Hence

by = (—22 x 15 —1006 — 116)/952
= —1-5252,-

b, = 159958, -

by = —2:9076.

The regression accounts for a sum of squares
(—22b; + 10065, — 116b3)/3 = 5488. (4.23.5)

Regression on log dose (x;) alone would account for a component of this
obtained by omitting x,, x3 and repeating the calculations, or more directly
from the familiar formula

(335-3333)%/21:3333 = 5271.
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The difference, with 24d.f., is a composite test of preparations and parallelism,
which cannot be separated completely because of non-orthogonality. As Table
4.23.2 shows, the two together are too small to occasion any concern;a test of
either could be made by omitting x; or x3 and finding out how much of the
5488 is left when a regression on x; and the other is formed, but the portions so
obtained would not be independent and additive (cf. Table 2.8.3). Note that the
error sum of squares is equal to that in Table 4.16.1; the procedures that gave
the two are algebraically identical, though a small discrepancy appears because
the arithmetic of estimating missing values in §4.21 was carried only to the
nearest integers. Table 4.23.2, however, gives unbiased validity tests.

TABLE 4.23.2  Final analysis of variance for exact analysis of Table

4.15.1
Adjustment for mean 160 445
Mean
Nature of variation d.f. Sum of squares square
Regression on log dose 1 5271
Preparations and Parallelism 2 217 108
Doses 3 5488
Litters, ignoring doses 6 4 786
Error 13 7 164 551-1
Total 22 17438

The definitions show that the regression coefficient on x, estimates the
regression of response on log dose, the quantity usually called b. Similarly, the
regression coefficient on x, is an estimate of one-half the difference in mean
responses for the two preparations, the quantity usually called (7 —¥g). The
method has ensured that these estimates are adjusted for non-orthogonality;
they differ from those in §4.21 only because of the rounding of decimal digits
in that section. Hence M is taken as

2 x 15252
M = Foigi 2 B 22208
*s X T T 7159958

= ES_XT_O'IQ()?. (4.23.6)

In order to construct the fiducial limits for M, the variances and covariance of
2b, and b, are needed. They are obtained from the matrix V as

Var(2b;) = 4329“ = 4552/238,
Var(h,) = 570, = 4557952, (4.23.7)
CUV(Zb s bz) = 252‘3]2 = == 35'2/476.
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Hence
(2:160)% x 45 x 551°1
952 % (15-9958)?
= 0-4750. (4.23.8)

Fieller’s theorem gives fiducial limits for (M — %g + %7); from equations (4.23.7)
they are

0-4750x6 __2-160
45 ~ 159958

[—0-1907+ {(180 —2 x 0-1907 x 6 + 0-1907* x 45

—0-4750 x 179-2) x 551-1/952}! "2 ] / 0-5250
(—0-1907 + 0:0633 + 0-9974)/0-5250

—2-1425,1-6571.

Once again from equation (4.15.1),

Bour L)
~ 00075

antilog 19713 = 250,

and similarly

02 a2
Ry = antilog 1:6776

= 127,
0-0075
2
Ry = 0 antilog 0:2494 = 474,

0-0075

The potency estimate could differ from that in §4.22 only because more digits
were retained in the present calculations; to the accuracy that may reasonably be
reported, it is identical with that obtained earlier. The widening of the limits to
12-7 ug and 47-4 pg per ml represents the effect of failure to adjust the first
analysis adequately on account of the missing entries in Table 4.15.1.

5

Symmetric dose - structure for parallel line
assays

5.1 The general structure

Chapter 4 has illustrated both the advantages of symmetry in the design of
biological assays and the inadequacy of the simplest symmetric assay in respect
of validity tests. A more general symmetric dose-structure, termed a (k, k)-point
assay, has k doses of each preparation such that successive doses of either prep-
aration bear a ratio D to one another (D > 1), with 2 subjects at each dose. The
total number of subjects,

N = 2nk, (5.1.1)

includes nk for each preparation. Before discussion of the general analysis, an
example of a (3, 3) assay is presented.

5.2 Anassay of vitamin By,

Emery et al. (1951) reported an assay conducted according to the principles
of the dose-response relation studied in §3.9. This assay has k = 6, N = 36, and
D = 1-5. By taking the dose metameter

x = log.s (z/z.), (5.2.1)

where z, is the central dose (1-2ng of S, 6 units of T), the values of x are made
—1, 0, 1 for each preparation. Table 5.2.1 contains the response metameters
obtained from equation (3.9.6). Fig. 5.2.1, showing mean responses plotted
against x, suggests both linearity and parallelism.

TABLE 5.2.1 Response metameters in an assay of vitamin B,,

Standard preparation (ng/tube) Test preparation (units/tube)
0-8 12 1-8 4 6 9
S, S, S, T, Ty T
0-96 1-06 1-17 091 1-09 1-15
0-91 1-07 1-14 093 1-04 1-15
092 099 1-14 098 0-97 1-14
0-76 086 1-13 0-96 1-06 1-16
1-03 1-06 1-13 0-89 1-04 1-10
0-93 1-02 1-15 1-01 1-02 115
5-51 6:06 6-86 5-68 6:22 685

The analysis of variance, Table 5.2.2, subdivides the total sum of squares into
components between doses and within doses (error); the assay has no classifi-
cation analogous to litters in the example of §4.15. The 5 d.f. between doses can

105



