7

Slope ratio assays

7.1 The power dose metameter

The assays in Chapters 4 to 6 used a logarithmic dose metameter, correspond-
ing to A=0 in §3.7. The alternative form of regression with A # 0 must now be
considered. As in §3.7, this requires the dose metameter

x = zM (7.1.1)
in terms of which the regression lines for the two preparations are
Yg = a+ fx,
° %) (1.1.2)
Yr=a+ ﬁp’&.

These equations represent two lines, of slopes § and Bp*, intersecting at x = 0:
obviously the expected response to zero dose must be the same for both prep-
arations. If bg, b are estimates of the regression coefficients,

o (lblz‘)m (7.13)
S

is an estimate of the relative potency, whence comes the name slope ratio assay.
Throughout this book, A = 1 will be assumed, because in all current applications,
it appears to be an adequate approximation to the truth. The restriction is not
very serious. Results appropriate to any other A can be derived by applying the
same methods to give estimates of R™ and its fiducial limits, and then raising
each to the power 1/A. If X itself had to be estimated for each assay, instead of
being regarded as a part of the definition of the dose metameter with a value
determined from preliminary investigations, the analysis would be more compli-
cated. The method of calculation for that problem will not be described here;
rarely would data from one assay suffice to estimate A with reasonable precision.

Though their discussion did not explicitly recognize the nature of the analysis,
Birch and Harris (1934) appear to have been the first to publish a slope ratio
assay.™) They found the duration of cure of bradycardia in vitamin B, deficient
rats to be directly proportional to dose of vitamin. They therefore estimated the
potency of a test preparation by adjusting dose scales until its response curve
coincided with that for the standard, essentially the procedure now used but
performed graphically rather than arithmetically.

Equations (7.1.2) were first systematically discussed for vitamins (Burn et al.,

(*)Mr L.E. Hudson has told me that, as early as 1908, W.S. Gosset (better known as ‘Student”)
was using analogous methods with A = 2 for estimating the effect of hops on thelife of beer.
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1950, Chapter III; Emmens, 1948, Chapter 20; Finney, 1945a, 1947d; Wood,
1945, 1946a). Because microbiological assays have always formed the major
application of slope ratio methods, microbiological terminology is adopted here.
The test subject is not a single animal but an inoculum (of specified size) of a
bacterial culture, which is added to a dose of § or T and incubated under stan-
dard conditions. The response is some measure of bacterial growth in a fixed
time, perhaps a measurement of turbidity or of the amount of alkali required to
neutralize the acid formed during growth. Moreover, the response actually
measured seems usually to show a homoscedastic linear regression. Consequently,
the response metameter is defined by

Y = U. (7.1.4)

The statistical theory is equally applicable to macrobiological techniques such as
that of Birch and Harris; more recently, Carpenter, McDonald and Miller (1972)
have used slope ratio estimation for assaying methionine in feeding stuffs with
either weight gain or food conversion efficiency in chicks as the response,

7.2 The multiple regression equation

Write xg, x ¢ for the doses of the two preparations. If equations (7.1.2) remain
valid down to xg = xp =0, it will be natural to run some tests on ‘blank’ or con-
trol subjects with zero dose; Chapter 8 shows this also to be expedient in respect
of efficiency. To fit regression equations independently for § and T would be
improper, even if blank tests have not been included. The constraint that
equations (7.1.2) have a common «, which corresponds to the constraint of
parallelism with a logarithmic dose metameter, must be introduced.

Equations (7.1.2) can alternatively be written

¥ o= a+ﬁsxs+ﬁTxT, (7.2.1)

with the understanding that, for assay purposes at least, interest is restricted to
situations in which one (or both) of xg, x is zero. Whether or not responses at
Xg=xp=0 have been measured, the ordinary procedure of multiple linear
regression (cf. §§2.8, 4.23) can be used to give the estimating equation

Y = a+bsxs+bTxT. (7-2.2)
The regression equations are obtained from
bgS. S

Wy i ] (7.2.3)
bSSxSxT+ bTSxTxT = SxT:r"

+ bTstxT =

The summations are to be taken over all subjects, as illustrated in §7.4. The esti-
mate of p is

R (7.2.4)

and limits of error can be obtained by Fieller’s theorem.
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7.3  Anunsymmetric slope ratio assay

Kent-Jones and Meiklejohn (1944) described an assay of nicotinic acid in a
meat extract, the test preparation being a solution containing 0-2 mg extract per
ml. Duplicate assay tubes were prepared for each of five doses of standard nic-
otinic acid and three doses of T, as well as for zero dose. The eighteen tubes
were inoculated from a culture of Lactobacillus arabinosus, and incubated at
37°C for 72 hours. The acidity of each tube was measured by titration with
N/14 sodium hydroxide, with bromothymol blue as an indicator in a colour
comparator. Table 7.3.1 records the responses. The design was scarcely ideal
(Chapter 8), but the lack of symmetry may help in emphasizing the main features
of the full statistical analysis. The authors intended to use a form of standard
curve estimation, inadequate by modern criteria but in this instance giving about
the right answer.

TABLE 7.3.1 Responses in an assay of nicotinic acid in a meat

extract (ml N/14 NaOH)
Dose of standard preparation (ug per tube)
0:05 0:10 0-15 0-20 0-25
35 5-0 6-2 8-0 9-4
3.2 4.7 ; 61 7-7 9:5
Dose of test preparation Blanks
(ml per tube)
1-0 1:5 20
49 63 7-7 1-5
4-8 65 77 14

Fig. 7.3.1 shows each response plotted against dose. In a slope ratio assay,
numerical values of xg and x4 may be very different. For convenience of rep-
resentation, separate dose scales can be used but should be drawn with a common
zero; the scales should be chosen to keep the two sets of points quite distinct, so
that two straight lines intersecting near the point for blanks xg=xp =0 can
easily be drawn. Of course, the mean response for blanks has no more reason to
lie exactly on the lines than has any other point. Lines drawn by eye in Fig. 7.3.1
show for S an increase in response of about 3-1 units (ml NaOH) per 0'1 ug, and
for T an increase in response of about 31 units per ml. Hence the potency of the
test preparation is about 0-1 ug per ml: 1g of the undiluted meat extract con-
tains about 500 ug nicotinic acid.

7.4  Analysis of variance

As usual, an analysis of variance aids examination of the validity of the assay.
The regression coefficients must first be calculated. With S symbolizing sum-
mation over the 18 tubes,
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Fig. 7.3.1  Linear dose—response regressions for the assay of nicotinic acid, Table 7.3.1
X : Responses to standard preparation
+: Responses to test preparation
o: ‘Blanks’

The straight lines are those mentioned in §7.3 as drawn by eye, but the calcu-
lated lines on which equation (7.6.1) is based are almost identical with them.

Sxg = 15,
Sxp = 90, (74.1)
Sy = 1041,

since xg = 0 except for tubes of the standard and x4 = O except for tubes of the
test preparation. The sums of squares and products of deviations are
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1-5)*
B = 0-2750—(—18l

= 0-15,
_1-5 x 90

xgxT
18 (14.2)

— 075,
Sy =, 1000,
Segy = 234,

x5y

Bt =755

From equations (7.2.3),
0:15b5—0-75bp
—0-75bg + 10-00b

234,
(7.4.3)
765,

whence
bs = 31080, }
bp = 3-096.

(74.4)

In the analysis of variance (Table 7.4.1), the total surh of squares and the sum of
squares between doses are found in the usual manner. The sum of squares for the
regression, 2 d.f. out of the 8 between doses, is

bsSxgy T brSepy = 31080 X 2:34 + 3096 x 7-65

(7.4.5)
= 96-412.
TABLE 7.4.1  Analysis of variance for Table 7.3.1
Adjustment for mean 602-045
Mean
Nature of variation d.f. Sum of squares square
Regression 2 96-412
Deviations from regression 6 0-278 0:0463
Between doses 8 96-690
Error 9 0-175 0-0194
Total 17 96:865

7.5 Validity tests

Table 7.3.1 gives no hint of heteroscedasticity. Bartlett’s test (§3.11) would
scarcely be a reliable indicator when each variance estimate is based on.1d.f,,
especially when the accuracy of measurement (to the nearest 0-1 ml) is low in
relation to the magnitude of the standard deviation. Had a test been needed,
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three mean squares might have been formed by pooling in sets of 3 d.f. from low
responses, high responses, and the remainder.

The sum of squares for deviations from the linear regression equation gives
a composite validity test relating to linearity of the regressions and intersection
of the two lines in a point estimated by the blanks. Because this sum of squares
does not subdivide into components as readily as does the corresponding sum
of squares in a parallel line assay, users of an assay such as that under discussion
often rest content with the composite test. In the present instance, the ratio
of the mean square to that for error is 2-4, as compared with 3-4 for probability
0-05 (Appendix Table II). Though not significant, the ratio is sufficiently large
to arouse the suspicion that at least one large component may be concealed in
the sum of squares for deviations, and a full analysis should be undertaken.

As for parallel line assays, linearity is a requirement for statistical validity;,
intersection of the true repressions at x =0 is a requirement for fundamental
validity, deriving from the hypothesis of similarity and analogous to parallelism
in parallel line assays. From the sum of squares for deviations from regression,
two components, to be briefly described as ‘Blanks’ and ‘Intersection’, each with
1 d.f., may be separated. First suggested by Bliss (1947b), these were discussed
more generally by Finney (1951a). One represents the deviation of the mean
response to zero dose from a new version of equation (7.2.1) fitted to the data
from the non-zero doses only; it provides a test of whether the equation remains
valid down to zero dose. The second component depends upon the difference in
the expected responses for zero dose calculated from lines fitted to the two
preparations separately, and thus it tests fundamental validity (Wood, 1945).
The remaining degrees of freedom comprise the curvature components for the
two preparations separately, excluding zero dose.

For an unsymmetric design, computation of the squares for blanks and inter-
section is tedious. The easiest general procedure is to introduce a new variate,
Xg, defined to have the value unity for the blanks, zero elsewhere. Calculate then
a multiple linear regression on xg, X, Xo: equations (7.4.3) extend to

0:1500bh5 — 0-7500b — 0-16678, = 2:3400,

Il

— 0750085 + 10-00006 — 1-0000b, = 7-6500, (7.5.1)
—0-1667bg — 1:0000b 1 + 1-7778by = — 8:6667.

The values of bg, by are no longer those of equations (7.4.4), but the same
notation is retained. The solutions of equations (7.5.1) are

bg = 30°1253,
by = 29874, (7.5.2)
by = —0:3704;

note the necessity for a large number of decimal places in order to give sufficient
accuracy in the next calculation. The sum of squares for the new regression is
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2-3400bg + 7-6500b — 8:6667by = 96-557.

The difference between this and the sum of squares with 2 d.f. in equation
(7.4.5) is the required component for blanks. That for intersection is obtained
indirectly by finding the residual sum of squares after fitting two separate linear
regressions to the non-zero doses. By calculation from the dose totals for the five
doses of S and three of T, the sums of squares between doses are 46:296 and
8-143, with 4 d.f. and 2 d.f. respectively. Linear regressions account for

(—2x67—97+157+2x 18:9)%/20 = 46208
(—97 +154)}4 = 8122

]

and

respectively. The residual for all types of curvature is therefore
(46296 —46-208) + (8-143 — 8:122) = 0-109

with 4 d.f., which could be further split into quadratic, cubic, and other com-
ponents. The square for intersection is now obtained by subtraction (0-278 —
0-144 — 0-109) and Table 7.5.1 is completed.

TABLE 7.5.1 Complete analysis of variance for Table 7.3.1

Adjustment for mean 602-045
7 Mean
Nature of variation d.f. Sum of squares square
Regression ) 2 96-412
Blanks 1 0-145 0:145
Intersection 1 0-025 0-025
Curvature 4 0-108 0-027
Between doses 8 96-690
Error 9 0-175 0-0194
Total 17 96-865

The mean square for blanks is significantly greater than error — clear evidence
of invalidity. Fortunately, this is only statistical invalidity, the mean response
for the blanks being appreciably lower than is predicted by fitting equation
(7.2.1) to the other data. Because a slight curvature at very low doses is not
uncommon, Wood (1946a) suggested that, for riboftavin assays using Lactobacil-
Ius helveticus as test subject, a small amount of the standard preparation (say
0-03 ug per tube) might be added to the basal medium, and only quantities in
excess of this regarded as experimental doses. The conventional zero dose should
then be brought on to the linear portions of both response curves. For a true-
analytic dilution assay, this procedure seems unexceptionable and adaptable to
assays of other materials. For a comparative assay, the risk of chemical or bio-
logical complications through mixing the standard and test preparations must be
considered.

The practice of placing replicate tubes of a dose adjacent to one another in the
incubator has been criticized in §6.7 (cf. §§4.19,4.20): it can be one reason for
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variance heterogeneity or for the mean square for deviation from regression being
larger than the error mean square. Such a flaw casts doubt on any assessment of
fiducial limits of the relative potency. Similar considerations apply to titrating
the acidity after incubation. To match duplicate tubes with one another for
colour, instead of independently with a standard, may produce a correlation of
response measurements and underestimation of the error variance. Experimenters
are tempted to believe that consecutive treatments of, or consecutive measure-
ments on, duplicate tubes give independent observations, and to ignore the poss-
ible correlation of subjective errors; the risk of biases that may pass unsuspected
is not negligible. In the present assay, curvature at very low doses seems a more
plausible explanation of the evidence for invalidity, since only the square for
blanks is much greater than the error mean square.

7.6 Potency estimation

In view of the anomalous behaviour of the responses at zero dose (Table
7.5.1), estimation of potency from the non-zero dose levels seems desirable.
Omission of the blanks makes a trivial difference to R itself, but it affects the
precision; use of the blanks would give an apparently more precise but possibly
misleading estimate. The natural method of computation is to proceed exactly as
in §7.4 but to use only the data from the 16 tubes. As is obvious from theoreti-

cal considerations, the values of bg, b are those in equations (7.5.2). Therefore
R = 2987/30-125

0:0992;

(7.6.1)

adjustment for the dilution then gives 496 ug per g as the estimated potency of
the meat extract.

- Evaluation of variances requires the inverse matrix of the coefficients in
equations (7.5.1); as in §4.23, this is found to be

16:9663 1-51685  2:44382

s

v = 151685 0241573 0278090 | . (7.6.2)
2-44382 (278090 0948034

In routine computation, V would be found first, and the regression coefficients
obtained from it, as

bs = 2'3400'17” + 7‘65001’12 _‘8'66671’]3, etc. (7.63)

Multiplication of s* by v,;, ¥22, and ¥, in turn gives the variances of bg, b and
their covariance. For 52, there appears to be no objection to using the error mean
square in Table 7.5.1, in spite of its inclusion of 1 d.f. from the blanks:

s* = 0:0194. (7.6.4)
Fieller’s theorem (§4.12) then gives the fiducial limits of R as
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02\ V2
Ry, Ry = [R g B ['Un —2Rvy; + R?vy _g('vzz % _E)} ] /(1 T
U1 bS V11
3 (7.6.5)
where

t2 2
L (1.6.6)
bs

In a good microbiological assay, the variation between replicate tubes should be

relatively much less than that between animals in a macrobiological assay. If g is
negligible, fiducial limits may be based upon the variance formula

2
VHF(R) = ;_‘29' [T)'gz = ZR'Ulz + Rz'f}u]. (7.6-7)

In the example under discussion,

(2:262)* x 0-0194 x 16-966
(30-125)?

= 0-0019,

which is sufficiently small to be neglected. From (7.6.5), the fiducial limits are

2-262
30-125

+ 0-166 79 — 0-000 20)}”2] /0-9981 _
0-0957, 0-1026.

Rp.Ry = [0-099 15 —0:000 17 & {00194 x (0241 57 —0-300 79

Since the meat extract was diluted 5000-fold for use as a test preparation, it is
estimated to contain 496 ug per g, with fiducial limits at 478 ug and 513 pg per g.
The same result may be obtained by using equation (7.6.7) to give the SE of
7-6ug per g to the potency estimate. Had the indications of invalidity been
ignored and the data from the blanks used, R would have been obtained from
equations (7.4.4); the estimate of potency would then have been 498 +7:3 ug
per g, with limits at 482 ug and 514 ug per g. In spite of the significance of Blanks
in Table 7.5.1, the difference in conclusion is clearly unimportant here.

7.7 General formulae
The general variance and covariance matrix may be written

SxTxT ) Sx_ng
A
Rl . (7.7.1)
y2S stxT SstS
A A

where

A= stxSSxTxT—(stxT)z- (772)
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The regression coefficients, solutions of equations (7.2.3), are

S ] (7.1.3)

bT = UIZSxSy + vZZSxTy'

bs = Ullsxsy+7)lzs

Equation (7.2.4) gives R. If g, equation (7.6.6), is small, the variance formula
2

5
VarR) = a7 (Sugus + 2RS HR2E ) (7.7.4)

xgxT
may be used;if g is not small, equation (7.6.5) is needed. An analysis of variance
like that in Table 7.4.1 can be constructed, with the aid of formula (7.4.5) for
the sum of squares that is accounted for by the regression. If the replicates are
not classified into blocks, the error sum of squares can be calculated directly
from the pooled variation within doses. The usual procedure of analysis of vari-
ance for the elimination of block effects would be necessary, for example, if the
tubes in the assay just discussed had been arranged in the incubator in two ran-
domized blocks of nine.

These formulae apply to any spacing of doses, to any numbers of tubes at
each dose, and whether or not tests are made at zero dose. If the sum of squares
for deviations from regression is to be subdivided as in Table 7.5.1, the formulae
may be applied twice, once including and once excluding the blanks, so as to
give the 1 d.f. for blanks as the difference between two residual sums of squares,
but the procedure in §7.5 is preferable.

Important though the general formulae are, symmetric designs should be
adopted whenever possible, because of their efficiency and their relative sim-
plicity of execution and analysis.

7.8 The symmetric (1, k, k)-point design

* A slope ratio design analogous to the (k, k) for parallel lines is the (1, &, k); in
its symmetric form, this has equal numbers of subjects at zero dose and at &
equally spaced doses of each preparation. Without loss of generality, the scales
may be so chosen that the highest dose of each preparation is unity; if on the
original scales these doses are Xg, Xy, the relative potency calculated on the
conventional scales must finally be multiplied by Xg/X . The total number of
subjects,

N = n(2k + 1), (7.8.1)
, 12 k—1 ;
includes n at zero dose and 7 at doses PR 1 of each preparation.
The algebra may be developed as in §5.3. If C, 51, 82, - .., Sp, Ty oo T

represent dose totals for the blanks and for the two preparations,

1 -
Segy = = (S, 428 + ...+ kS,) — (k + 1)Sy/(4k + 2),

) (7.8.2)
py = 7 (T +2Ta .+ KTy) — (e + 1)Sy /(3K +2).
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Equation (7.7.1) then becomes

3k 5K+ 5k+2 3k + 1)
T NG+ DE D) \3k(k+ 1) 5k + Sk +2

v ) , (78.3)

the factor outside the matrix being understood as multiplying each of the
elements. Equations (7.7.3) give the regression coefficients. The components of
the analysis of variance for blanks and intersection are given by two orthogonal
contrasts, Lg and Ly, defined by

Ly = k(k—1)C—(2k —2)(S, + T1)— 2k — 5)S; + T2)
—(2k—8)(S3+ Ta)+ ...+ (k— 1)Sp+ Ty) (7.8.4)+
for which the divisor is
Ni(k —1)(K* + &+ 1)/(2k + 1), (7.8.5)
Ly = (2k—2)(5, —Ty) + Qk —5)S, — To) + 2k — 8)( S, —T3)+ ...
— (e = 1)(S — T) (7.8.6)

and

for which the divisor is
Nk(k—1). ; (7.8.7)

The sum of squares for the remaining (2k —4) d.f. between doses is then found
by subtraction of

bsSsgy + BrSeqgy, (2 d.f), (7.4.5)
(2k+ DL (7.8.8)
Nk(k—1D(&*+k+1) (1d.f),
and o
Li (1 d.f) (7.8.9)
Nk(k—1)

from the complete sum of squares between doses with 2k d.f.; it may be further
partitioned into quadratic, cubic and higher-order components for each prep-
aration, by applying to the S totals and the T totals separately the same ortho-

gonal coefficients as were discussed in Chapter 5. ki
In the absence of evidence of invalidity, the estimate and its fiducial limits are

assessed by equations (7.2.4) and (7.6.5). The variances and covariance of the
regression coefficients are obtained from V as

Var(bg) = s°v4;,
VﬂI(bT) = Szvzz, (7.8.10)
Cov(bg, by) = s*vya,

whence
3% k(5k* + Sk +2) (7.8.11)

8= N+ Dkt 1)
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The formula for Var(R) and the fiducial limits can be written in terms of &, but
they do not take any particularly simple form and the general expressions are
more easily remembered.

If the assay is statistically invalid because of the significance of Ly, the data
for the blanks may be rejected; the remainder may be treated as a (0, &, k) design,
with a new analysis as described in § 7.12, remembering that the total number
of subjects is now only 2nk or 2Nk/(2k + 1).

79 The(l,1,1) assay

The simplest special case, the (1, 1, 1) design, is even less satisfactory than is
the (2, 2) parallel line assay. Although it provides no validity tests of any kind, it
is of interest as a standard of comparison, since, if the experimenter were certain
of validity a priori, it would lead to the most reliable estimate of potency. In any
(1, 1, 1) assay, the regression lines are obtained by joining the points representing
the mean S and T responses to the point for the blanks, so giving a perfect fit of
the data to the regression equations; no degrees of freedom remain for tests of
statistical or fundamental validity.

In the symmetric design, V/3 subjects are tested at zero dose and at unit dose
of §, T If the totals of the responses at the three doses are C, S, T, the general
equations of § 7.8 agree that

bg = 3(5, — Q)/N,
(7.9.1)
bT T 3(T1 _C')/N:
and
R = (T, — O}, —0O). (7.9.2)
Moreover,
_ 6r%?
£ = W2
2Nt s?
= __.—__3(81 o (7.9.3)

The fiducial limits might be expressed directly in terms of the totals C S8, Ty,
but they are more conveniently written

RL,RU=[R—§giL{%2(4—4R +4R2—3g)}mJ /(1 —g). (79.4)

bs
When g is small, a satisfactory approximation is
6s*(1 —R + R?)

Var(R) = iR

(7.9.5)
7.10 The(1,2,2) assay

The (1, 2, 2) design is usually preferable to the (1, 1, 1), though its advantages
are achieved at the cost of a reduction in relative reliability (Chapter 8). The
symmetric form is perhaps the most useful of all slope ratio designs. To each of
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the five doses (zero and %, 1 unit of each preparation) V/5 subjects are assigned.
Equation (7.8.3) becomes

4 fl6 9

V=— (7.10.1)
IN\ 9 16

The regression coefficients can be calculated from equations (7.7.3) and the cor-
responding sum of squares from (7.4.5).

Alternatively, the calculations may be made directly from contrasts between
responses. This is analogous to the procedure in Chapter 5, but the contrasts for
bg and b are not mutually orthogonal (§ 4.16); consequently, the two regression
coefficients cannot be made to give independent squares for the analysis of vari-
ance, and use of formula (7.4.5) is unavoidable. The remaining dose contrasts
can be subdivided into components orthogonal with one another and with bg
and by as in § 7.8. In Table 7.10.1, the first two divisors are to be used only for
forming bg and b, and the others only for forming the appropriate squares. The
reader should verify the non-orthogonality of bg and b, and the orthogonality
of every other pair. The contrasts Lp and L;, together with the regression,
account for the whole of the sum of squares between doses, as will be numerically
verified in Tables 7.10.2 and 7.10.3.

TABLE 7.10.1  Coefficients of regression and orthogonal contrasts for the (1, 2, 2) design

Contrast c S, S, T, T, Divisor
b —15 1 17 —6 3 35n/2
b‘;{ —15 -6 3 1 17 35n/2
2 —) 1 —2 1 14n
if 0 2 —1 —2 1 10n

The analysis of variance analogous to Table 7.5.1 may now be completed. If
examination of Lg, Ly and any other relevant tests does not indicate invalidity,
the fiducial limits to R are

2 175 1/2
RL,RU=[R—95+1l81(8—9R+3R2~——g)} ]/(l—g), (7.10.2)

16 bg |TN 32
where
e 64t25: , (7.10.3)
TNbs
When g is small enough to be ignored,
e U LB o) (7.10.4)

TINb%
Formulae for unsymmetric (1, 2, 2) designs (Wood and Finney, 1946) are rarely
needed and will not be reproduced here.
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The computational simplicity of the symmetric (1, 2, 2) design may be illus-
trated by an assay of a sample of malt for its riboflavin content, using Lactobacil-
lus helveticus as the test organism and titrating for acidity with sodium hydrox-
ide. The data in Table 7.10.2 were reported by Wood (1946a), who used 20
tubes, 4 each for blanks, 0-1, 02 ug of standard riboflavin and 0-025, 0-05 g malt
per tube. Responses were measured to the nearest 0-05 ml: for arithmetical con-
venience, this may be taken as the unit of response, so that all values of y are
integers.

TABLE 7.10.2 Responses in an assay of riboflavin in malt (measured in units of 0-05 ml
N/10 NaOH)
Standard preparation: 1 unit = 0-2 ug riboflavin
Test preparation: 1 unit = 0-05 g malt

Blanks Standard Test
xg=10 xg=1! xg=1 xg=0 xg=0
IT=0 IT=0 xT=0 xT=§ xT=1
38 97 167 80 121
45 100 164 88 124
40 105 159 90 122
44 98 156 82 122
167 400 646 340 489

Equations (7.2.3) become
— 18bg+ 32bp = 464,

Alternatively, for the dose totals in Table 7.10.2, the contrasts defined in Table
7.10.1 give

bs = 8304/70
bp = 5686/70

118629,
81-229.

The sum of squares for regression is therefore
118629 x 233-4 + 81229 x 464 = 31 4569.
Again using Table 7.10.1,
Ly = —11,
M)

which make contributions 11%/56, 37%/40 to the analysis of variance in Table
7.10.3. Direct computation of the sum of squares between doses (4 d.f.) checks
the total of these three items. The error sum of squares may be obtained by sub-
traction, or by pooling contributions, each with 3 d.f., from the columns of
Table 7.10.2. The mean squares from these five contributions, 10-9, 12-7, 24-3,



162 SLOPE RATIO ASSAYS § 7.10

227 and 16, show no association with the magnitude of the mean response; ran-
domization had been strictly conducted, so that the small component from the
higher dose of malt has no obvious explanation, and Bartlett’s test discloses no
heterogeneity. Table 7.10.3 gives no indication of invalidity in respect of blanks
or intersection.

TABLE 7.10.3  Analysis of variance for Table 7.10.2

Adjustment for mean 2084882
Mean

Nature of variation d.f. Sum of squares square
Regression 2 31456-9
Blanks 1 2:2 22
Intersection 1 342 34-2
Between doses 4 314933
Error 15 2165 14-43
Total 19 31 709-8

In the units for analysis, the estimate of potency is, by equation (7.2.4),
R = 81-229/118-629
= 0-6847.
Equation (7.10.3) gives
_ 16x (2:131)* x 1443
35 x (118:63)?

so small that the standard error of R, 00181, could safely be used. Equation
(7.10.2) gives

Ry, Ry = 0-6464,0:7235
as the fiducial limits. In order to express the results as ug riboflavin per g malt,

they must be multiplied by the ratio of units, 0-2/0-05. The conclusion is that
the malt contains 2-74 ug riboflavin per g with fiducial limits at 259 and 2-89 ug

per g.

= 0:0021,

7.11  Other (1, k, k) assays

Designs with higher values of & are seldom chosen. As shown in Chapter 8,
they are appreciably less efficient, and their additional validity tests are not often
needed. Uncertainty about the upper limit of the range of linearity occasionally
makes desirable an assay with one or two high dose levels that can be rejected
from the analysis if they are clearly beyond the linear region.

For the (1, 3, 3) design,

9 (31 18

= —— : (7.11.1)
26N \18 31
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Table 7.11.1 shows the non-orthogonal contrasts for the regression coefficients.
The remaining 4 d.f. between doses may be divided orthogonally into blanks,
intersection, and a quadratic component for each preparation. The contrasts are
shown in Table 7.11.1; since the regression curves are not parallel, no meaning
attaches to average measures of curvature, and the use of separate components
for the two preparations seems preferable. The divisors are used to give the mag-
nitudes of bg and by, and to pive the squares for the other contrasts; the sum of
squares for the regression must as usual be calculated from formula (7.4.5).

TABLE 7.11.1  Coefficients of regression and orthogonal centrasts for the (1, 3, 3) design

Contrast c 8, S, S, T, Ty T, | Divisor
bg —42 —11 20 51 —24 —6 12 | 182n/3
by —42 —24 —6 12 -1 20 51 | 182a/3
Lp 6 —4 —1 2 —4 -1 2 78n
Ly 0 4 1 -2 —4 -1 2 42n
L.s 0 1 —2 1 0 0 0 6n
L,p 0 0 0 0 1 —i2 1 6n

The (1,4,4) design is easily incorporated into a programme that ordinarily
uses (1,2,2), as it requires only that additional tests be made at doses one-
quarter and three-quarters of the highest for each preparation. For this design,

24 {17 10

- 7.11.2
35N \10 17 ( )

The regression and other contrasts are in Table 7.11.2; a factor 3 has been
femoved from Ly and L;. The additional degrees of freedom are associated with
cubic components for the two preparations, Lyg and L3q. The relation of the
quadratic and cubic components to L, and Lj in Table 5.6.1 should be clear.
For most purposes, a composite test of residual curvature with 4 d.f. will suffice;
the sum of squares is obtained by subtracting the regression, blanks, and inter-
section components from the total between doses.

TABLE 7.11.2  Coefficients of regression and orthogonal contrasts for the (1, 4, 4} design

Contrast c S, S, S, S, T, i T, T, | Divisor
bg —30 | —13 4 21 38| —20 —10 0 10 | 105n/2
by —-30 | —20 -—10 0 10 | —13 4 21 38 | 105n/2
Lp 4 -2 -1 0 Lrlmr—2 —~1 0 1 28n
L; 0 2 1 0 -1 =2 = 0 1 12n
L,g 0 1 -1 -1 1 0 0 0 0 4n
L 0 0 0 0 0 1 -1 =1 1 4n
L,g 0 —1 3 =3 1 0 0 0 0 20n
L,p 0 0 0 0 0y —1 & 1 20n
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7.12  The symmetric (0, k, k)-point design

A second type of symmetric slope ratio assay has no blanks, but instead has &
doses equally spaced between ¢ and 1 for each preparation, ¢ being taken as
small yet sufficiently large to avoid curvature. Thus the doses are

1—c¢ 21 —¢) (k—2)1—c¢)

c‘,c+k_1,c+ e pohd g o IR B8
with V/2k subjects at each. This design would not be chosen if the linear regression
of response on dose were believed to hold down to zero dose, for it would then
fail to use the whole range of linearity and so would give results less precise than
the best obtainable. For an assay based upon a response that is known to depart
from a linear regression at low doses, a (0, k, k) design can be a good choice; the
value of ¢ might perhaps be about 0-1.

General formulae involve both ¢ and %, and offer no particular advantages over
the complete regression calculations. One special case is that of a (1, &, k) con-
verted into a (0, k, k) by the necessity of rejecting the tests on the blanks, because
of significant deviation from the linear regression equation (cf. § 7.8). For this
design, ¢ = 1/k, and M is now the original N multiplied by 2k/(2k + 1). Hence

2 6> Sk+1  3(k+1)
NE —DRE+D) \3(k+1) Sk+1 )

The blanks contrast no longer occurs; that for intersection is still Ly as defined
by (7.8.6), with divisor 2NV(k — 1)(2k + 1) in terms of the new V.

v (7.12.1)

TABLE 7.12.1  Coefficients of regression and orthogonal contrasts for
the (0, 2, 2) design withe =1}

Contrast S, S, T, Ty Divisor
bg —4 7 —6 3 5n
by —6 3 —4 7 5n
Ly 2 -1 —2 1 10n

TABLE 7.12.2  Coefficients of regression and orthogonal contrasts for the (0, 3, 3) design

withe =1
Contrast S, S, S, T, T, T, Divisor
bg -3 1 5 —4 = 2 14n/3
bp —4 —1 2 -3 1 5 14n/3
Ly 4 1 -2 —4 =1 2 42n
L,g 1 —2 1 0 0 0 6n
L,p 0 0 0 1 =12 1 6n

For ease of reference, the contrasts required for k = 2, 3, 4 in designs result-
ing from rejection of the blanks in a (1, k, k) assay are summarized in ‘Tables
7.12.1-7.12.3; these are arranged to correspond to Tables 7.10.1, 7.11.1, and
7.11.2. The variance matrices are
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TABLE 7.12.3  Coefficients of regression and orthogonal contrasts for the (0, 4, 4) design

withe =%
Contrast S, S, S, S, T, T, Ts T, Divisor
bg —8 —1 6 13 —10 —35 0 5 15n
by —10 -5 0 5 —8 —1 6 13 15n
Ly 2 1 0 —1 -2 —1 0 1 12n
L,g flo asyerey 1 0 0 Dol it g 4n
Lyp 0 0 0 0 Lidprstley sd—d 1 4n
Ly —1 3 3 1 0 0 0 0 20n
T 0 0 0 e =5 3 asille 1 20n
g (11 9
V= — : (7.12.2)
SN\9o 11
7 4 3
V = — 4 (7.12.3)
TN\ 3 4
and
32 f T 5
V= -
15V s ’ (7.12.4)

respectively. In the formulae, &V always represents the total number of subjects
in the assay as analyzed, and » the number of subjects per dose, so that equation
(7.8.1) must be replaced by

N = 2nk. (7.12.5)

7.13  Routine assays

With the obvious modifications, much of §§ 5.7-5.10 applies to slope ratio
assays. If a particular design is used frequently as a routine, the calculations
should be standardized and reduced to a minimal labour consistent with extract-
ing adequate information. For desk calculation of any of the symmetric designs,
the formulae in earlier sections are easily applied systematically; a computer pro-
gram that both draws attention to any evidence of invalidity and completes the
potency estimation is simple to write. Nomographs could be developed. Approxi-
mations such as range estimation of standard deviations (Wood, 1947h) should
have the same status as for parallel line assays.

For routine assays, control charts should prove a valuable guard against unsus-
pected changes in experimental conditions. Control charts might be set up for s?
and bg, and also for Ly and L; or for the ratios of these two quantities to their
standard errors. In order to give better values for s* and bg, some pooling of esti-
mates {rom previous assays might be permitted in a series of assays showing satis-
factory control. The suggestions in § 5.10 are readily adapted.
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7.14  Other slope ratio problems

Whereas the study of parallel regression lines preceded their special use in bio-
logical assays, development of statistical methods for concurrent pencils of
regression lines seems to have begun with slope ratio assays. Neither the designs
nor the arrangement of the analysis of variance suited to assays are necessarily
the best in other circumstances. Claringbold (1959) pointed out that, when chief
interest lies in tests of significance of slope differences, sets of mutually ortho-
gonal contrasts may be preferable and also that the blanks may give little relevant
information. His valuable paper should be seen by any who have problems allied
to the slope ratio situation but not strictly of an assay type. Other special
methods of analysis appropriate to pencils of lines have been well presented by

Williams (1959).

8

Efficiency in slope ratio assays

8.1 General principles

The principles of assay design described in §§ 6.1-6.7 are as relevant and as
important in slope ratio as in parallel line assays. Their application leads to
different advice, because the formulae expressing precision and reliability are
different. The requirements of good design for slope ratio assays are here dis-
cussed under the assumption that conditions (a), (b), and (c) of § 6.8 again
apply, except that the regression is now known to be linear on the absolute
measure of dose. The problem for the assayist is still that of making the best
use of a total of V subjects.

Suppose that the highest doses of §, T used in an assay are Xg, Xp. As in
§ 7.7, define vy, V13, V5 to be the elements of the variance matrix after
rescaling all doses so that the highest dose of each preparation is unity; that is to
say, these quantities relate to an assay in which all doses of S have been divided
by Xg, all doses of T by Xy. Then, for the assay as actually performed,

i V12
X2 XgXp
V= ; (8.1.1)
BL A
XsXr X%

This definition enables the effect of the range of doses to be kept distinct from
that of changing the distribution of doses over their range. From equation (7.6.5)
the quarter-square of the fiducial interval for R is

IZSZ v22 2Rv 5 RZ,U i g 1)2
i = + B _n
bE(1 —g)’ [X% XX X2 xa\'® )] (8.1.2)

U1
where
By
bEXZ (8.1.3)
Equation (8.1.2) may be written
252172
= E%X—%;Tg)—z[vzz—zhvm+hzyll —g(vn—:-—i)]; (8.1.4)

the quantity
h = RXT/Xs, (8.1.5)

the ratio of estimated relative potency to relative magnitudes of the highest
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